
Information

Security

Mail: a0taghinezhad@gmail.com

By Dr. Taghinezhad

1

mailto:a0taghinezhad@gmail.com

Network Security

Essentials

Chapter 3

by William Stallings

Lecture slides by Lawrie Brown

2

Authentication Using

Conventional Encryption

• Is it possible to authenticate by the use of symmetric encryption?

• If only the sender and receiver share a key

• Only the genuine sender encrypt a message successfully for the other

participant, and receiver can recognize a valid message.

• But, symmetric encryption alone is not a suitable tool for data

authentication.

• Ex, in the ECB mode of encryption, if an attacker reorders the blocks

of ciphertext, then each block will still decrypt successfully. However,

the reordering may alter the meaning of the overall data sequence.

3

message authentication

without confidentiality

• When same message is broadcast to a number of

destinations.

• i.e., network unavailable notification

• An exchange in which one side has a heavy load and

cannot afford the time to decrypt all incoming messages.

• The Authentication of a computer program in plaintext

can be executed without having to decrypt it every time,

which would be wasteful of processor resources.

4

Message

Authentication
• Message authentication is concerned with:

• protecting the integrity of a message

• validating identity of originator

• non-repudiation of origin (dispute resolution)

• the three alternative for msg authentication func:
• message encryption

• message authentication code (MAC)

• hash function

5

Message Authentication Code

• MAC: the use of a secret key to generate a small block of data,

known as a message authentication code (MAC), that is appended

to the message.

• Two communicating parties, say A and B, share a common secret

key KAB

• When A has a message to send to B, it calculates the message

authentication code as a function of the message and the key:

MACM = F(KAB, M). The message plus code are transmitted to

the intended recipient.

6

Message Authentication Code

If we assume that only the receiver and the sender know the identity

of the secret key, and if the received code matches the calculated

code, then the following statements apply:

1.The receiver is assured that the message has not been altered.

2.The receiver is assured that the message is from the alleged

sender. Because no one else knows the secret key

3. If the message includes a sequence number (such as is used with

HDLC and TCP), then the receiver can be assured of the proper

sequence.

7

Message Authentication Code

8

Hash Functions

➢condenses arbitrary message to fixed size

h = H(M)

➢usually assume hash function is public

➢hash used to detect changes to message

➢want a cryptographic hash function

⚫ computationally infeasible to find data mapping to specific hash

(one-way property)

⚫ computationally infeasible to find two data to same hash

(collision-free property)

9

Two Simple Insecure

Hash Functions

• consider two simple insecure hash functions

• bit-by-bit exclusive-OR (XOR) of every block

• Ci = bi1 xor bi2 xor . . . xor bim

• a longitudinal redundancy check

• reasonably effective as data integrity check

• one-bit circular shift on hash value

• for each successive n-bit block

• rotate current hash value to left by1bit and XOR block

• good for data integrity but useless for security

10

Simple xor hash func

11

One-Way Hash

Function
• An alternative to the message authentication code is the one-way

hash function.

• A hash function accepts a variable-size message M as input and

produces a fixed-size message digest H(M) as output.

• Unlike the MAC, a hash function does not take a secret key as

input.

• To authenticate a message, the message digest is sent with the

message in such a way that the message digest is authentic

12

One-Way Hash

Function
• Two approaches for one way hash function:

• 1) The message digest can be encrypted using conventional encryption

(part a); if it is assumed that only the sender and receiver share the

encryption key, then authenticity is assured.

• 2: The message digest can be encrypted using public-key encryption

(part b); two advantages: (1) It provides a digital signature as well as

message authentication. (2) It does not require the distribution of keys

to communicating parties.

13

14

Third technique

15

A and B, share a common secret value SAB

When A has a message to send to B, it calculates

the hash function over the concatenation of the

secret value and the message:

MDM = H(SAB | | M)

It then sends [MDM | | M] to B.

Because B possesses SAB, it can recompute

H(SAB | | M)and verify MDM

One-way hash func

Two approaches also have an advantage over approaches that
encrypt the entire message in that less computation is
required.

However, there are techniques that avoids encryption
altogether. Several reasons for this interest are pointed out in:

• a:Software is quite slow for Encryption,

• b:Encryption hardware costs are nonnegligible

• c:Encryption hardware is optimized toward large data
sizes while it has large overhead For small blocks of
data,

• d:An encryption algorithm may be protected by a patent
(need permission)

16

Hash Function

Requirements

For message, a hash function (H) must have the

followings:

1.H can be applied to a block of data of any size.

2.H produces a fixed-length output.

3.H(x) is relatively easy to compute for any given x,

making both hardware and software implementations

practical.

17

Hash Function

Requirements (Cont.)

4. For any given code h, it is computationally

infeasible to find x such that H(x) = h. (one-

way or preimage resistant)

5.For any given block x, it is computationally

infeasible to find y ≠ x with H(y) = H(x).

(second pre-image resistant) or weak

collision resistant.

6.It is computationally infeasible to find any pair

(x, y) such that H(x) = H(y), referred as:

(collision resistant or strong collision resistant).
18

Hash Function

Requirements (Cont.)

• 4-th property (one-way): if the authentication technique

involves the use of a secret value. The secret value itself is

not sent; however, if the hash function is not one way, an

attacker can easily discover the secret value.

• If second pre-image resistant property were not true,

Attacker First, observe or intercept a message plus its

encrypted hash code; second, generate an unencrypted hash

code from the message; third, generate an alternate message

with the same hash code n.

• The sixth property, collision resistant, protects against a

sophisticated class of attack known as the birthday attack.

Details are beyond the scope. The attack reduces the strength

of an m-bit hash function from 2m to 2m/2

19

Attacks on Hash

Functions

➢have brute-force attacks and cryptanalysis

➢ For an m-bit hash value, the level of effort is proportional to
2m, For Average 2m–1 values of y to find one that generates a
given hash value h

➢a preimage or second preimage attack

⚫ find y s.t. H(y) equals a given hash value

➢collision resistance

⚫ find two messages x & y with same hash so H(x) = H(y)

➢hence value 2m/2 determines strength of hash code against
brute-force attacks

⚫ 128-bits inadequate, 160-bits suspect

20

Attacks on Hash

Functions

➢brute-force attacks : does not depend on the specific

algorithm but depends only on bit length of hash value

➢Cryptanalysis: an attack based on weaknesses in a

particular cryptographic algorithm. For a hash code of

length n, the level of effort required is proportional to the

following

➢ Preimage resistant 2n

➢ Second preimage resistant 2n

➢ Collision resistant (birthday attack) 2n/2

21

Secure Hash Algorithm->SHA

➢SHA originally designed by NIST & NSA in 1993

➢was revised in 1995 as SHA-1

➢US standard for use with DSA signature scheme

➢based on design of MD4 algorithm with key differences

➢produces 160-bit hash values

➢recent 2005 results on security of SHA-1 have raised
concerns on its use in future applications

➢Security researchers have achieved the first real-world
collision attack against the SHA-1 hash function at 2017,
producing two different PDF files with the same SHA-1
signature1

23

Revised Secure Hash

Standard
➢NIST issued revision FIPS 180-2 in 2002

➢adds 3 additional versions of SHA
⚫SHA-256, SHA-384, SHA-512

➢designed for compatibility with increased security
provided by the AES cipher

➢structure & detail is similar to SHA-1

➢hence analysis should be similar

➢but security levels are rather higher

24

SHA applications

•SHA-2 is used for1:
•Digital certificates validation

•Authentication

•Password protection

•Data integrity checks

•It is implemented in some widely used security

applications and protocols, including TLS and SSL, PGP,

SSH, S/MIME, and IPsec.

25

https://www.devicemag.com/sha2/

SHA Versions

Size are bits SHA-1 SHA-224 SHA-256 SHA-384 SHA-512

Message

digest size 160 224 256 384 512

Message size < 264 < 264 < 264 < 2128 < 2128

Block size 512 512 512 1024 1024

Word size 32 32 32 64 64

Number of

steps 80 64 64 80 8026

SHA-512

The algorithm takes as input a message with a maximum length of less
than 2128 bits and produces as output a 512-bit message digest.

• Plain text is processed by N blocks which each block is 1024 bits

• Number of rows and steps:80

• Each round=80

• In Each round,

• Qword or W of 64 bits which is generated from plaintext

• we use constant eighty k,

• We use buffer to store intermediate results and output(hashcode)

• Each buffer size: 64bits, so we have (512/64=8) buffer.

27

SHA-512

• Step 1: Append padding bits: The message is padded so that its

length is congruent to 896 modulo 1024 [length = 896 (mod

1024)] or 1024-128=896 bits for the last block.

• The padding consists of a single 1 bit followed by the necessary

number of 0 bit

• Step 2: Append length: A block of 128 bits is appended to the

message containing the length of the message

28

SHA-512

• Step 3: Initialize hash buffer: A 512-bit buffer is used to hold
intermediate and final results of the hash function. The buffer can
be represented as eight 64-bit registers (a, b, c, d, e, f, g, h).

• These registers are initialized to the following 64-bit integers
(hexadecimal values):

• a = 6A09E667F3BCC908 e = 510E527FADE682D1

• b = BB67AE8584CAA73B f = 9B05688C2B3E6C1F

• c = 3C6EF372FE94F82B g = 1F83D9ABFB41BD6B

• d = A54FF53A5F1D36F1 h = 5BE0CD19137E2179

• Step 4: Process message (buffers) in 1024-bit (128-word) blocks in
80 rounds;

• this module (algorithm)is labeled F in Figure

• Step 5 Output of buffer is hash func
29

SHA-512 Overview

30

• Each words is 64

bits, which means 16

words for 1024 bit

blocks. Rest of the

words are aquired

from these 16 words

• Kt are cube root of

first 80 prime

number.

31

SHA, word-selection

32

Keyed Hash Functions as

MACs
➢want a MAC based on a hash function?

⚫ because hash functions are generally faster

⚫ crypto hash function code(library) is widely available

➢ hash includes a key along with message

➢ original proposal:
KeyedHash = Hash(Key|Message)

⚫ some weaknesses were found with this , however eventually HMAC
is proposed

➢A hash function such as SHA was not designed for use as a MAC
and cannot be used directly for that purpose because it does not
rely on a secret key.

➢HMAC has been issued as RFC 2104, has been chosen as the
mandatory to-implement MAC for IP Securiy.

33

Problem of cryptograpy with

msg authentication

34

Now attacker receive the message and changes 5 to 4 in

decipher

h15jxFKqraHIUeq4iEo4nA== ->Decipher-> send Ali 300$

send Ali 200$ Encipher- h15jxFKqraHIUeq4iEo5nA==

However, there is still a chance that attacker change

message and regenerate hash and send it.

Problem of cryptograpy with

msg authentication

Message (M) H(M)

35

What if we use hash?

If we use hash as a checksum, we can understand it,

Message (M) H(K|M)

We better append a key between two party to the

message inorder to prevent tempering, because if

attacker alter the M, he can not recompute Hash.

This is MAC

The problem of MAC is that, attacker can append to M, and recalculate hash if he

can guess the length of the shared key.

HMAC Design

Objectives

➢use, without modifications, hash functions

➢allow for easy replaceability of embedded hash function

➢preserve original performance of hash function without

significant degradation

➢use and handle keys in a simple way.

➢have well understood cryptographic analysis of authentication

mechanism strength

36

HMAC

• specified as Internet standard RFC2104

• uses hash function on the message:
HMACK(M)= Hash[(K

+ XOR opad) ||

Hash[(K+ XOR ipad) || M)]]

• where K+ is the key padded out to size of msg, e(x.1024bit for
SHA-256)

• opad, ipad are specified padding constants

• overhead is just 3 more hash calculations than the
message needs alone

• any hash function can be used
• eg. MD5, SHA-1, RIPEMD-160, Whirlpool

37

HMAC

Overview

Message M consist of b

bits, based on hash

input, for SHA-3 it is

1024bit block.

K+ should be b bits,

which expended from

key K by appending

zeros to the end of K.

ipad = 00110110 (36 in

hexadecimal) repeated b/8

times

opad = 01011100 (5C in

hexadecimal) repeated b/8

times

38

HMAC Security

• proved security of HMAC relates to that of the underlying hash
algorithm

• attacking HMAC requires either:

• brute force attack on key used

• birthday attack (but since keyed would need to observe a very large
number of messages)

• choose hash function used based on speed verses security
constraints

• HMAC can be formulated by:

• HMAC(K, M) = H[(K+ ⊕ opad) || H[(K+ ⊕ ipad) ||M]]

39

Private-Key

Cryptography
➢ traditional private/secret/single key cryptography uses one key

➢ shared by both sender and receiver

➢ if this key is disclosed communications are compromised

➢also is symmetric, parties are equal

➢does not protect sender from receiver forging a message &
claiming is sent by sender

40

Public-Key

Cryptography
• Probably most significant advance in the 3000 year history of

cryptography

• uses two keys – a public & a private key

• asymmetric since parties are not equal

• uses clever application of number theoretic concepts to function

• complements rather than replaces private key crypto

41

Misconception about

public-key

• public-key encryption is more secure from cryptanalysis

than conventional encryption:

• Not true: security of any encryption scheme depends on

• (1) the length of the key

• (2) the computational work involved in breaking a cipher.

• public-key encryption is a general-purpose technique

that has made conventional encryption obsolete.

• Not true: due to the computational overhead of current

public-key encryption schemes, no likelihood for abandoning

conventional encryption

42

Why Public-Key

Cryptography?

• developed to address two key issues:

• key distribution – how to have secure communications in
general without having to trust a KDC(key distribution
center) with your key

• digital signatures – how to verify a message comes intact from
the claimed sender

• public invention due to Whitfield Diffie & Martin Hellman
at Stanford University in 1976

• known earlier in classified community

• NSA know it in 60’s

43

Public-Key

Cryptography

• public-key/two-key/asymmetric cryptography
involves the use of two keys:

• a public-key, which may be known by anybody, and can be
used to encrypt messages, and verify signatures

• a related private-key, known only to the recipient, used to
decrypt messages, and sign (create) signatures

• infeasible to determine private key from public

• is asymmetric because

• those who encrypt messages or verify signatures cannot
decrypt messages or create signatures

44

Public-Key

Cryptography

45

Symmetric vs Public-

Key

46

RSA

➢by Rivest, Shamir & Adleman of MIT in 1977

➢best known & widely used public-key scheme

➢Based on four steps: creating key, distribution, encipher

and decipher

➢RSA is a block cipher in which the plaintext and

ciphertext are integers between 0 and n - 1 for some n

➢security due to cost of factoring large numbers

⚫ nb. factorization takes O(e log n log log n) operations (hard)

47

RSA

48
Rivest (middle), Shamir (left) & Adleman (Right)

RSA En/decryption

• to encrypt a message M the sender:

• obtains public key of recipient PU={e,n}

• computes: C = Me mod n, where 0≤M<n

• to decrypt the ciphertext C the owner:

• uses their private key PR={d,n}

• computes: M = Cd mod n

• note that the message M must be smaller than the

modulus n (block if needed)

49

RSA En/decryption

• PU={e,n} = (5,14)

• PlainText: B -> ConvertToNumber-> 2

• C = Me mod n -> C= 25 mod 14

• Cipher=4 ->ConvertText-> D

• PR={d,n}=(11,14)

• Decipher= M = Cd mod n -> 411 mod 14=2

• So 2 is the Same as B the message.

50

RSA limitation

• RSA limit: Message size must be less or equal to rsa

key size

• RSA key size which is only 256 bytes or bigger

• So for bigger data,

• we encrypt AES which has 256bits or 512bits key size

using RSA.

• We send AES key using RSA.

• We send our message body Decrypted by AES.

51

RSA Key Setup

• Each user generates a public/private key pair by:

• 1) selecting two large primes at random: p, q
(i.e:17,11)

• computing their system modulus n=p.q (i.e.,:187)
• note (phi) ø(n)=(p-1)(q-1) selecting at random the

encryption key e to be a prime to ø(n)
• where 1<e<ø(n), gcd(e,ø(n))=1 (i.e., e=7)

• solve following equation to find decryption key d
• e.d mod 160 =1 and 0≤d≤n (i.e., d=23->bcz
7*23=161)

• publish their public encryption key: PU={e,n}

• keep secret private decryption key: PR={d,n}
52

RSA Example - Key

Setup

1. Select primes: p=17 & q=11

2. Calculate n = p.q =17 x 11=187

3. Calculate ø(n)=(p–1)(q-1)=16x10=160

4. Select e: gcd(e,160)=1; choose e=7

5. Determine d: d.e mod 160=1 and d < 160
Value is d=23 since 23x7=161= 10x160+1

6. Publish public key PU={7,187}

7. Keep secret private key PR={23,187}

53

RSA Example -

En/Decryption
➢ sample RSA encryption/decryption is:

➢given message M = 88 (nb. M<n => 88<187)

➢encryption:

C = 887 mod 187 = 11

➢decryption:

M = 1123 mod 187 = 88

54

Security Considerations

of RSA

• Mathematical attacks: effort to factoring the product of two primes

• Defense: use a large key size. Thus, the larger the number of bits in d, the
better.

• calculations overhead, both in key generation and in encryption/decryption,
are complex, the larger the size of the key, the slower the system

• Timing attacks: depend on the running time of the decryption
algorithm. Various approaches to mask the time required so as to thwart
attempts to deduce key size have been suggested, such as random delay.

• Chosen ciphertext attacks: This type of attack exploits properties of
the RSA algorithm by selecting blocks of data that, when processed
using the target’s private key, yield information needed for
cryptanalysis.

• Defense: by suitable padding of the plaintext.

55

Diffie-Hellman Key

Exchange Protocol
• Firstly proposed public-key type scheme

• by Diffie & Hellman in 1976 along with the description of public

key concepts

• note: now know that Williamson (UK CESG) secretly proposed the

concept in 1970

• is a practical method for public exchange of a secret key

• used in a number of commercial products

56

Steps

• Step1, all users agree on global parameters (a and q):

• q: large prime integer or polynomial q

• a: being a primitive root mod q

. باشدqباید ریشه اولیه به هنگ aعدد •

(هم باقی مانده بودن)هم نهشتی اعداد •

57

12 mod 5=2

27 mod 5=2
27 ≡ 12 (mod 5)

هم نهشت است۶به هنگ ۱۲با ۲۷

ریشه اولیهکردنپیدا

یعنی qبه روی aریشه اولیه •

• 𝑎𝑖 𝑚𝑜𝑑 𝑞, (1 ≤ 𝑖 < 𝑞) باید تمامی خروجی ها برای این عبارت متفاوت باشند

• 𝑎1, 𝑎2, 𝑎3… 𝑎𝑞−1

نحوه پیدا کردن ریشه•

۷به هنگ aاول

58

Diffie-Hellman Setup

• 1) all users agree on global parameters (a and q):

• large prime integer or polynomial q

• a being a primitive root mod q

• 2) each user (eg. A) generates their key: x

• chooses a secret key (number): xA < q

• compute their public key: yA = a
xA mod q

• 3) each user share that public key yA

59

عددی پروتکلمثال

.توافق می کنند=۵aو مقدار اولیه =۲۳qدو طرف روی مقدار عدد اول 1.

۶xAطرف اول مقدار پنهانی 2. a)را انتخاب و=
xA mod q) راآنکهرا برای طرف دوم ارسال می کند

Aمی کنیمفرض.
o۸=۲۳mod ۵۶

۱۵xBطرف دوم مقدار پنهانی 3. a)را انتخاب و=
xB mod q) کهرا برای طرف اول ارسال می کند

می نامیمBراآن
o۱۹= ۲۳mod ۵۱۵

(B)طرف اول مقدار4.
xA mod qرا محاسبه کرده و به عنوان کلید رمز مشترک در نظر می گیرد

o ۲ = ۱۹۶ mod ۲۳
(A)طرف دوم مقدار5.

xB mod qرا محاسبه کرده و به عنوان کلید رمز مشترک در نظر می گیرد.

o ۲ = ۸۱۵ mod ۲۳

o ل در حقیقت رمز مشترک از فرمو. مشترک را یک عدد به دست آورده اندرمزطرفدومیبینیم هر
a. زیر به دست می آید

xA.xB
mod q

60

Diffie-Hellman Key

Exchange
• shared session key for users A & B is KAB:

KAB = a
xA.xB mod q

= yA
xB mod q (which B can compute)

= yB
xA mod q (which A can compute)

• KAB is used as session key in private-key encryption scheme

between Alice and Bob

• if Alice and Bob subsequently communicate, they will have

the same key as before, unless they choose new public-keys

• attacker needs an x, must solve discrete log

61

Difei-hellman example on

color

• Alic and Bob agree on a common paint

• Each add its secret color

• They exchange their output color

• They add each secret color to the received

color

• The result is the shared color.

63

Key Exchange

Protocols
Users could create random private/public D-H keys each time they
communicate

• Simpler protocol:
• User A wishes to set up a connection with user B and use a secret

key to encrypt messages on that connection.
• User A can generate a one-time private key XA, calculate YA, and

send that to user B.
• User B responds by generating a private value XB, calculating YB,

and sending YB to user A.
• Both users can now calculate the key.
• The necessary public values q and a would need to be known

ahead of time. Alternatively, user A could pick values for q and a and
include those in the first message.

• both of these are vulnerable to a meet-in-the-Middle Attack

• authentication of the keys is needed (both parties must have the
same key)

64

As an example of Diffie–Hellman

algorithm

• Suppose that a group of users (e.g., all users on a LAN) each generate a
long-lasting private value Xa and calculate a public value Ya.

• These public values, together with global public values for q and a, are
stored in some central directory.

• At any time, user B can access user A’s public value, calculate a secret
key, and use that to send an encrypted message to user A.

• If the central directory is trusted, then this form of communication
provides both confidentiality and a degree of authentication.

• Because only A and B can determine the key, no other user can read
the message (confidentiality). Recipient A knows that only user B
could have created a message using this key (authentication).
However, the technique does not protect against replay attacks.

65

Difei-hellman

• Applications:

• TLS protocol

• Whatsapp in every chat

• Telegram on secret chat

• Signal

66

Attack is not

possible

67

Private Private

Public Public

Middle-Man

Eve can not calculate any of the parties private key.

68

Effective: Man-in-the-Middle

Attack

1. Darth (Middle man) prepares two private / public keys random private
keys XD1 and XD2, and then computing the public keys YD1 and YD2.

2. Alice transmits her public key YA to Bob , ut, Darth intercepts YA and
instead transmits his first public key YD1 to Bob. Darth also calculates a
shared key with Alice K2 = (YA) X_B mod q

3. Bob receives the public key YD1 and calculates the shared key (with Darth
instead of Alice) K1 = (YA)X_B mod q

4. Bob transmits his public key YB to Alice

5. Darth intercepts YB and transmits his second public key YD2 to Alice.
Darth calculates a shared key with Bob K1 = (YB)X_B mod q

6. Alice receives the key YD2 and calculates the shared key (with Darth
instead of Bob) K1 = (YA)X_A mod q

➢ Darth can then intercept, decrypt, re-encrypt, forward all messages
between Alice & Bob 69

Digital Signatures

• We have looked at message authentication

• but did not address issues of lack of trust

• digital signatures provide the ability to:

• verify author, date & time of signature

• authenticate message contents

• be verified by third parties to resolve disputes

• Thus, the digital signature function includes the

authentication function.

70

Digital Signatures

• Suppose that Bob wants to send a message to Alice.

• the message can or not be kept as a secret,

• Bob uses a secure hash function, such as SHA-512, to generate a hash
value for the message. S=digital_signature_algorithm(hash value,
Bob’s private key)

• Bob sends => M (message) + S (digital_signature(H, Bob’s PV key)).

• When Alice receives M (message) + S (signature).

• She does: (1) calculates a hash value for the message and

• (2) provides the hash value and Bob’s public key as inputs to a
digital signature verification algorithm. If the algorithm returns the
result that the signature is valid

71

Digital Signature

Model

72

Digital

Signatu

re

Model

73

Chapter 9 – Public Key

Cryptography and RSA

Every Egyptian received two names, which were

known respectively as the true name and the good

name, or the great name and the little name; and

while the good or little name was made public, the

true or great name appears to have been carefully

concealed.

—The Golden Bough, Sir James George Frazer

74

