
1

https://ataghinezhad.github.io/

Mail:

a0taghinezhad@gmail.com

By Dr. Taghinezhad

mailto:a0taghinezhad@gmail.com

MapReduce

Chapter:

2

3

https://ataghinezhad.github.io/

▪ Problem Statement / Motivation

▪ An Example Program

▪ MapReduce vs Hadoop

▪ GFS (Google File System) / HDFS
(Hadoop distributed File System)

▪ MapReduce Fundamentals

▪ Example Code

▪ Workflows

▪ Conclusion / Questions

4

https://ataghinezhad.github.io/

▪ Early Distributed Computing Challenges:

• Managing large concurrent systems efficiently.

• Utilization of grid computing for resource

sharing.

• Development of custom solutions ("roll your

own").

5

https://ataghinezhad.github.io/

•Complexity of Threading:

•Difficult to manage threads across distributed systems.

•Scaling:

•Adding more machines without performance bottlenecks.

•Failure Handling:

•How to recover gracefully when machines fail.

•Communication Between Nodes:

•Ensuring nodes exchange data efficiently and reliably.

•Scalability:

•Evaluating whether the solution can handle increasing

workloads.

6

https://ataghinezhad.github.io/

▪ In the era preceding MapReduce, large-scale data

processing faced several challenges due to limitations in

hardware, software, and methodologies.

▪ Large Concurrent Systems

• Definition: Large concurrent systems refer to

computing environments where multiple operations run

simultaneously, sharing resources like CPU, memory,

and storage.

•Challenges:
• Concurrency Management: Ensuring operations do not interfere with each

other (e.g., locking resources).

• Data Integrity: Preventing data corruption due to simultaneous read/write

operations.

• Performance: Maximizing throughput without sacrificing speed or efficiency.

•Use Cases: Early applications included web servers, database systems,

and large-scale simulations.

8

https://ataghinezhad.github.io/

▪ Pre-MapReduce Era: Custom Solutions for Data Processing

Before frameworks like MapReduce, developers often created custom solutions to

handle large-scale data processing.

• Advantages:

• Tailored Optimization: Custom solutions could be highly optimized

for specific tasks.

• Control: Full control over the implementation, allowing flexibility.

• Drawbacks:

• Complexity: Building a distributed processing system from scratch

requires significant expertise.

• Maintenance: Custom solutions are harder to maintain, especially as

team members change.

• Scalability: Many home-grown solutions struggled to scale efficiently.

9

https://ataghinezhad.github.io/

▪ Scenario

• You are tasked with analyzing a massive dataset containing

metadata for millions of YouTube videos. The dataset includes fields

such as:

• Likes: Number of likes each video has received.

• Comments: Number of comments.

• Engagement Rate: Metric calculated using likes, views, and shares.

• Video Duration: Length in seconds or minutes.

▪ Challenges:

• The dataset is too large for a single machine and distributed across

multiple servers.

▪ Objective:

Using the MapReduce paradigm to:

1. Efficiently process the dataset across distributed servers.

2. Identify videos with a specific number of likes (e.g., exactly 1,000 likes or

within a range).

10

https://ataghinezhad.github.io/

▪ 1) Distributed Data:

• Large datasets are split into distributed chunks of data.

• A central file system controller manages the locations of

all data chunks in the system.

▪ 2) No Data Movement

• Instead of moving data to a centralized location, we send

the computation (map) to the data to avoid the cost of

moving large amounts of data.

▪ 3) Key-Value Structure of the Data

• Data chunks in MapReduce share a common structure:

key-value pairs.

• When reducing or processing data chunks, they originate

from the same dataset, identified by a common key.

11

https://ataghinezhad.github.io/

▪ 4) Machine Failures

• In the case of machine failure during the map or reduce operation,

the operation is simply retried.

• The system ensures that failure does not affect the overall

computation.

▪ 5) Idempotency

• The system is idempotent, meaning that reapplying the map and

reducing functions multiple times will not alter the final output.

▪ 6) Engineering with Libraries (e.g., Hadoop)

• Engineers use libraries like Hadoop to manage distributed data

processing.

• The focus is on input/output operations and leveraging the distributed

framework for computation.

12

https://ataghinezhad.github.io/

13

https://ataghinezhad.github.io/

• Splits the input data.

• Coordinates the shuffle and sort process.

• Collects final results.

• Perform mapping of data chunks.

• Execute reduction tasks after

receiving shuffled and sorted data.

▪ Master/Slave nodes typically form the HDFS cluster

Master/NameNode

Slave/DataNodeSlave

Slave/DataNodeSlave

Slave/DataNodeSlave

14

https://ataghinezhad.github.io/

15

https://ataghinezhad.github.io/

▪ Objective: Word Count Using MapReduce: Objective and Phases

• Input: A large, unstructured text file of any size. This could range from a few

KB to many TB.

• Output: A list of each unique word in the text along with the number of times it

occurs.

▪ Given the sentence: The doctor went to the store.

▪ To achieve this, we assume:

• Case-Insensitive Counting: "The" and "the" are counted as the same word.

• Punctuation Ignored: Words are split correctly, and punctuation (like periods

or commas) is ignored.

▪ MapReduce Phases: MapReduce divides the process into two main phases: Map

and Reduce. We’ll also see a Shuffle and Sort step that occurs between them.

• 1) Map Phase

• 2) Shuffle and Sort Phase (Intermediary)

• 3) Reduce Phase

Word Count

The 2

Doctor 1

Went 1

To 1

Store 1

16

https://ataghinezhad.github.io/

▪ 1. Mapper Phase

• Input: Each Mapper processes one or

more files (or portions of them, called

"splits") and extracts the words from

these files.

• Key Output: The word (e.g., “apple”).

• Value: The occurrence count, set to 1 for

each instance of the word.

In this scenario, we’ll use MapReduce to process two files. The task is to

count occurrences of each word across these files, where each file

contains different sets of text.

17

https://ataghinezhad.github.io/

2. Shuffle and Sort Phase

• Purpose: The shuffle and sort phase automatically groups all key-value

pairs by key. Each unique word becomes a single group, containing all its

occurrences from all mappers.

• Output: The shuffle process outputs a list of grouped key-value pairs where:

• Key: The word.

• Values: A list of occurrence counts from all mapper

18

https://ataghinezhad.github.io/

▪ 3. Reducer Phase

• Purpose: The reducer processes each group of key-value pairs by aggregating

all values for the same key (word) to produce a final count.

• Logic: For each unique key, the reducer sums up all occurrences in the list of

values.

• Output: A single output file that contains each unique word and its total

occurrence count across both files.

19

https://ataghinezhad.github.io/

▪ Map Phase

• In the Map phase, the input data (text file) is split into smaller chunks, and
each chunk is processed in parallel by different machines or nodes.

• The mapper function takes in these chunks and processes each one
independently to produce a series of intermediate key-value pairs.

▪ Map Function:

• For each chunk of text, the function:

▪ Tokenizes the text into words.

▪ Converts all words to lowercase (case-insensitive).

▪ Strips punctuation.

▪ Outputs a key-value pair for each word, where the key is the word itself,
and the value is 1 (indicating one occurrence of the word in that chunk).

• The mapper will output the following key-value pairs:

▪ ("the", 1) ("doctor", 1) ("went", 1) ("to", 1) ("the", 1) ("store", 1)

• If multiple mappers are running in parallel on different chunks, each
mapper will output similar lists of key-value pairs for its assigned text
chunk.

20

https://ataghinezhad.github.io/

2. Shuffle and Sort Phase

• The shuffle and sort phase occurs automatically after the mapping phase. It

is critical for organizing and grouping data so that the reducers can work

efficiently.

▪ Purpose:

• Grouping by Key: All occurrences of the same word (key) are grouped

together.

• Sorting: Within each key group, values are sorted or simply collated.

▪ Example Output After Shuffle and Sort:

• After this phase, the intermediate data might look like:

("doctor", [1])

("store", [1])

("the", [1, 1])

("to", [1])

("went", [1])

21

https://ataghinezhad.github.io/

▪ 3. Reduce Phase

• In the reduce phase, each group of key-value pairs (for each word) is sent to

a reducer, which aggregates the values to compute a final count for each

word.

▪ Reduce Function:

• For each word (key), the reducer sums up the values in the list.

• Outputs the word along with its total count.

▪ Example:

▪ For our grouped key-value pairs:

• ("doctor", [1]) => ("doctor", 1)

• ("store", [1]) => ("store", 1)

• ("the", [1, 1]) => ("the", 2)

• ("to", [1]) => ("to", 1)

• ("went", [1]) => ("went", 1)

▪ The output is a set of word-count pairs that provide the final count of each unique

word in the text.

22

https://ataghinezhad.github.io/

• Scalability: MapReduce can handle data of any size by splitting it

across multiple nodes. This approach enables processing from KB to

TB or even PB-sized data.

• Parallel Processing: Each mapper and reducer works independently

on its data segment, allowing parallel execution and reducing the total

processing time.

• Fault Tolerance: MapReduce is designed to recover from node

failures. If a node fails during any phase, MapReduce can rerun the

task on a different node.

• Data Locality: Mappers are often scheduled on nodes where the data

chunks reside, minimizing data transfer across the network.

23

https://ataghinezhad.github.io/

▪ Problem Statement / Motivation

▪ An Example Program

▪ MapReduce vs Hadoop

▪ GFS / HDFS

▪ MapReduce Fundamentals

▪ Example Code

▪ Workflows

▪ Conclusion / Questions

24

https://ataghinezhad.github.io/

▪ The paper is written by two researchers at Google, and describes

their programming paradigm

▪ Open Source implementation is Hadoop MapReduce

• Not developed by Google

• Started by Yahoo

▪ Google’s implementation (at least the one described) is written in C++

▪ Hadoop is written in Java

25

https://ataghinezhad.github.io/

▪ Key Points from the Google MapReduce Paper:

• Google's Needs: The Google researchers needed a way to process

and analyze massive datasets, such as indexing the web, across

distributed infrastructure. The MapReduce paradigm was born out

of the necessity to efficiently manage data processing at an

enormous scale.

• Programming Model: The paper introduces a simple model with two

primary functions –Map and Reduce - that make it easier to split

tasks into parallel operations, allowing for scalability and fault

tolerance.

• Implementation at Google: The original MapReduce implementation

described in the paper was developed internally at Google in C++.

This system was proprietary to Google and not available for public

use, but it demonstrated a model that would inspire similar

frameworks.

▪ Why MapReduce Wasn't Publicly Available

26

https://ataghinezhad.github.io/

▪ To make MapReduce accessible outside of Google, Yahoo!

spearheaded an open-source implementation known as

Hadoop MapReduce. Hadoop brought the power of MapReduce

to everyone and became an industry standard for processing big

data on distributed systems.

• Hadoop’s Beginnings: Originally initiated as part of the Apache

Nutch search engine project, Hadoop’s development was taken on by

Yahoo, which aimed to create a scalable and reliable framework

similar to Google’s MapReduce. Hadoop has since grown into a full

ecosystem of tools under the Apache Foundation.

• Written in Java: Unlike Google’s C++ implementation, Hadoop

MapReduce is written in Java. This difference makes Hadoop portable

across various operating systems and platforms, leveraging Java’s

platform independence.

• Industry Impact: Hadoop MapReduce has been widely adopted

across industries due to its open-source nature, enabling organizations

to manage large datasets without needing proprietary tools or

infrastructure.

27

https://ataghinezhad.github.io/

▪ Hadoop evolved beyond MapReduce into a full

ecosystem supporting a range of data processing

needs, including:

• HDFS (Hadoop Distributed File System): Hadoop’s

distributed storage system, optimized for scalability and

fault tolerance.

• Hive: A data warehousing tool on top of Hadoop,

allowing SQL-like querying.

• Pig: A platform for complex data transformations.

• Spark: Although separate from Hadoop’s MapReduce,

Spark became popular for faster, in-memory data

processing.

28

https://ataghinezhad.github.io/

▪ Distributed Filesystems (GFS and HDFS)

• Definition: Distributed filesystems like the Google File System

(GFS) and Hadoop Distributed File System (HDFS) are

specialized storage systems that manage data across multiple

machines in a network.

• Purpose in MapReduce: These filesystems are designed to

handle the storage and retrieval of massive datasets, supporting

the large-scale, distributed data processing model of MapReduce.

▪ A few concepts are key to MapReduce though:

• Google File System (GFS) and Hadoop Distributed File System

(HDFS) are essentially distributed file-systems ?

• Are fault tolerant through replication?

• Allows data to be local to computation ?

29

https://ataghinezhad.github.io/

▪ Problem Statement / Motivation

▪ An Example Program

▪ MapReduce vs Hadoop

▪ GFS / HDFS

▪ MapReduce Fundamentals

▪ Example Code

▪ Workflows

▪ Conclusion / Questions

30

https://ataghinezhad.github.io/

▪ MapReduce relies on two types of components:

• User Components: These are customizable parts of the

MapReduce program that the user defines to control the specific

data processing logic.

▪ Mapper

▪ Reducer

▪ Combiner (Optional)

▪ Partitioner (Optional) (Shuffle)

▪ Writable(s) (Optional)

• System Components: These are built-in components managed

by the system to orchestrate and coordinate the MapReduce job

▪ Master

▪ Input Splitter*

▪ Output Committer*

Image source: http://www.ibm.com/developerworks/java/library/l-hadoop-3/index.html

31

https://ataghinezhad.github.io/

• Purpose: The combiner is an optional component that acts as a

"mini-reducer" to reduce the amount of data that needs to be shuffled

across the network.

• Functionality:

• Runs on the output of the mapper and performs a preliminary

aggregation of data on the same machine as the mapper.

• Helps optimize performance by minimizing the data sent to the

reducers.

• Example (Word Count): The combiner could sum up the counts for

each word on a single machine, reducing multiple pairs like

• ("word", 1) to a single pair ("word", local_count).

32

https://ataghinezhad.github.io/

•Purpose:

•The partitioner determines how intermediate key-value pairs

from the mappers are assigned to specific reducers.

•Functionality:

•Ensures that all values for a specific key go to the same

reducer by assigning keys to reducers based on a hash

function or custom logic.

•Controls data distribution across reducers, which is especially

useful when certain keys are more frequent than others.

•Example: For a large dataset, a custom partitioner might assign

certain ranges of words (e.g., words starting with "A-M" to one

reducer, "N-Z" to another) to balance the load.

33

https://ataghinezhad.github.io/

•Purpose: Writable are data types in Hadoop's Java-based

MapReduce framework, designed to handle serialization and

deserialization of data.

•Functionality:

•Hadoop provides several Writable classes (e.g., IntWritable,
Text, LongWritable) that wrap basic data types and support

efficient data transmission.

•Custom writables can be created to represent complex data

structures.

•Example: In a MapReduce job processing integers, IntWritable
might be used to represent and transfer integer values efficiently.

34

https://ataghinezhad.github.io/

▪ These components are integral to the MapReduce framework, managing the

core processes required to execute a MapReduce job.

▪ 1. Master (Job Tracker)

• Purpose:

▪ The master component, also known as the job tracker, coordinates the

execution of a MapReduce job by assigning tasks and monitoring their

progress.

• Functionality:

▪ Manages job scheduling, task distribution, and resource allocation.

▪ Tracks task completion or failure and reassigns tasks in case of node

failure to ensure fault tolerance.

• Example:

In Hadoop MapReduce, the job tracker decides which mapper and

reducer tasks run on which nodes. If a node fails, it reschedules the tasks

to another available node.

35

https://ataghinezhad.github.io/

▪ 2. Input Splitter

• Purpose:

▪ The input splitter divides the input dataset into smaller,

manageable chunks for the mappers, enabling parallel

processing.

• Functionality:

▪ Splits the input file into "splits" based on factors such as file

size, format, or the number of records.

▪ Assigns each split to a mapper, ensuring that processing is

distributed across multiple nodes.

• Customization:

Users can implement custom input splitting logic for specialized

file formats or unique data structures to optimize performance.

36

https://ataghinezhad.github.io/

▪ 3. Output Committer

• Purpose: The output committer manages how the final

output of each reducer is written to storage.

• Functionality:

• Ensures that partial or temporary output files

generated by reducers are finalized and committed

atomically.

• Prevents errors in case of partial output (e.g., if a

reducer fails during writing).

• Customization: Users can provide custom output

committers if specific handling is required for the final

output.

37

https://ataghinezhad.github.io/

▪ User Components:

• Mapper

• Reducer

• Combiner (Optional)

• Partitioner (Optional)

(Shuffle)

• Writable(s) (Optional)

▪ System Components:

• Master

• Input Splitter*

• Output Committer*

* You can use your own if

you really want!

Image source: http://www.ibm.com/developerworks/java/library/l-hadoop-3/index.html

38

https://ataghinezhad.github.io/

▪ Mappers and Reducers are Single-Threaded: They work on one task

at a time and are deterministic, meaning they always produce the same

output for the same input.

▪ Determinism: Ensures failed jobs can be restarted or executed

speculatively (on multiple machines for reliability).

▪ Scalability: To handle more data, simply add more Mappers and

Reducers without worrying about writing complex multithreaded code.

▪ Independence: Each Mapper and Reducer works independently,

allowing you to use almost any number of machines.

▪ Execution: Mappers and Reducers run on arbitrary machines, with

each machine typically having multiple slots (usually one per CPU

core) for running them.

▪ Isolation: In Hadoop, Mappers and Reducers run in their own Java

Virtual Machines (JVMs), ensuring process isolation and stability.

39

https://ataghinezhad.github.io/

Mapper 2

Mapper 0

Mapper 1

Reducer 0

Reducer 1

Out 0

Out 1

In
p

u
t

Split 2

Split 1

Split 0

40

https://ataghinezhad.github.io/

▪ Is responsible for splitting your input into multiple chunks

▪ These chunks are then used as input for your mappers

▪ Splits on logical boundaries. The default is 64MB per

chunk

• Depending on what you’re doing, 64MB might be a

LOT of data! You can change it

▪ Typically, you can just use one of the built in splitters,

unless you are reading in a specially formatted file

41

https://ataghinezhad.github.io/

▪ Example: In a Word Count job:

• Input: The text:

"The teacher went to the store. The store was

closed; the store opens in the morning. The store

opens at 9am."

• Output: The Mapper splits the text into words and emits key-value pairs,

with each word as a key and 1 as its value:

<The, 1> <teacher, 1> <went, 1> <to, 1> <the, 1>

<store, 1> <the, 1> <store, 1> <was, 1> <closed, 1>

<the, 1> <store, 1> <opens, 1> <in, 1> <the, 1>

<morning, 1> <the, 1> <store, 1> <opens, 1> <at, 1>

<9am, 1>

▪ This intermediate output is later grouped and aggregated by Reducers to

produce the final result.

42

https://ataghinezhad.github.io/

▪ Accepts the Mapper output, and collects values on the key

• All inputs with the same key must go to the same reducer!

▪ Input is typically sorted, output is output exactly as is

▪ For our example, the reducer input would be:

• <The, 1> <teacher, 1> <went, 1> <to, 1> <the, 1> <store, 1> <the, 1> <store,

1> <was, 1> <closed, 1> <the, 1> <store, 1> <opens, 1> <in, 1> <the, 1>

<morning, 1> <the 1> <store, 1> <opens, 1> <at, 1> <9am, 1>

▪ The output would be:

• <The, 6> <teacher, 1> <went, 1> <to, 1> <store, 3> <was, 1> <closed, 1>

<opens, 1> <morning, 1> <at, 1> <9am, 1>

43

https://ataghinezhad.github.io/

▪ Essentially an intermediate reducer

▪ Is optional

▪ Reduces output from each mapper, reducing bandwidth and sorting

▪ Cannot change the type of its input

• Input types must be the same as output types

44

https://ataghinezhad.github.io/

▪ Is responsible for taking the reduce output, and

committing it to a file

▪ Typically, this committer needs a corresponding

input splitter (so that another job can read the

input)

▪ Again, usually built in splitters are good enough,

unless you need to output a special kind of file

45

https://ataghinezhad.github.io/

▪ Decides which pairs are sent to which reducer

▪ Default is simply:

• Key.hashCode() % numOfReducers

▪ User can override to:

• Provide (more) uniform distribution of load between

reducers

• Some values might need to be sent to the same reducer

▪ Ex. To compute the relative frequency of a pair of words

<W1, W2> you would need to make sure all of word W1

are sent to the same reducer

• Binning of results

46

https://ataghinezhad.github.io/

▪ Responsible for scheduling & managing jobs

▪ Scheduled computation should be close to the data if possible

• Bandwidth is expensive! (and slow)

• This relies on a Distributed File System (GFS / HDFS)!

▪ If a task fails to report progress (such as reading input, writing output,

etc), crashes, the machine goes down, etc, it is assumed to be stuck,

and is killed, and the step is re-launched (with the same input)

▪ The Master is handled by the framework, no user code is necessary

47

https://ataghinezhad.github.io/

▪ The Master in a distributed framework is responsible for scheduling and

managing jobs, ensuring efficient and reliable execution.

▪ Key Responsibilities:

1. Job Scheduling:

1. Tasks are scheduled to run close to the data whenever possible to minimize

bandwidth usage, as bandwidth is expensive and slow.

2. This relies on the use of a Distributed File System like GFS or HDFS,

which ensures that data is distributed and accessible across nodes.

2. Fault Tolerance:

1. If a task fails to make progress (e.g., during input reading, output writing, or

due to machine failure), it is assumed to be stuck.

2. The task is terminated and restarted on another node using the same input.

3. The deterministic nature of tasks ensures consistency when they are

restarted.

3. side effects to ensure that retries or duplicates do not cause inconsistencies in

the system.

48

https://ataghinezhad.github.io/

3. Data Replication:

3. HDFS can replicate data to ensure it is locally available for tasks
when needed, improving efficiency.

4. Handling Slow Nodes:

1. If a node is completing its task too slowly (due to hardware issues,
network delays, etc.), the Master may launch a duplicate of the task
on another node.

2. The first one to finish is accepted, and the duplicate task is
terminated.

5. Simplicity for Users:

1. The Master and its responsibilities are handled by the framework.
Users do not need to write additional code for scheduling or fault
management.

6. No Side Effects:

1. Tasks should have no side effects to ensure that retries or duplicates
do not cause inconsistencies in the system.

49

https://ataghinezhad.github.io/

Writable types in Hadoop are classes designed for serialization and

deserialization of data to and from a stream. They are crucial for
managing input, output, and intermediate data in the Hadoop framework.

-Key Features:

1. Serialization/Deserialization:
Writable types can convert data into a stream for storage or transfer
and reconstruct it when needed.

2. Framework Requirement:
The Hadoop framework requires Writable types for input and output
because it serializes data before writing it to disk or transferring it
across nodes.

3. Custom Writables:
Users can implement the Writable interface to create custom data
types for their specific input, output, or intermediate values.
This allows flexibility in handling complex data structures like arrays,
maps, or user-defined objects.

50

https://ataghinezhad.github.io/

4. Default Writable Types:
Hadoop provides default Writable classes for basic types, such as Strings
(Text), Integers (IntWritable), and Longs (LongWritable).

5. Usage in Applications:
A typical MapReduce application requires six Writables:

1. 2 for Input: To represent the key-value pairs read by the mappers.
2. 2 for Intermediate Values: To transfer data between the mappers

and reducers.
3. 2 for Output: To write the final key-value pairs to the output.

51

https://ataghinezhad.github.io/

▪ Problem Statement / Motivation

▪ An Example Program

▪ MapReduce vs Hadoop

▪ GFS / HDFS

▪ MapReduce Fundamentals

▪ Example Code

▪ Workflows

▪ Conclusion / Questions

52

https://ataghinezhad.github.io/

• The key (LongWritable) is not used in this example but would typically represent the

position in the file.

• The value (Text) is the content (like a line from the text document).

• The function tokenizeString(line) is assumed to break the line into individual

tokens (words).

• For each token (word), the map function writes an output pair with the token as the key

and the value 1 (count) as the value.

public void map(LongWritable key, Text value, Context context) {
String line = value.toString(); // Convert the input Text value to

a string
for (String part : tokenizeString(line)) { // Tokenize the line

into words
context.write(new Text(part), new LongWritable(1)); // Write

the token and its count (1)
}

}

53

https://ataghinezhad.github.io/

1. The key (Text) represents the token (word).

2. The values are the iterable collection of LongWritable objects, each holding a 1

that was produced by the Mapper for each occurrence of the token.

3. The reduce function sums up all the LongWritable values for that token.

4. The final result is a <Text, LongWritable> pair, where the key is the token,

and the value is the total count of how many times that token appeared across the

dataset.

public void reduce(Text key, Iterable<LongWritable> values, Context
context) {

long sum = 0; // Initialize the sum variable.

// Iterate through each LongWritable value (each count of the token).
for (LongWritable val : values) {

sum += val.get(); // Add the value of each occurrence to the sum.
}
// Write the final output (token and its total count) to the context.
context.write(key, new LongWritable(sum));

}

54

https://ataghinezhad.github.io/

▪ What is a Combiner?

• A Combiner is an optional component in Hadoop MapReduce, used to

reduce the amount of data transferred between the Mapper and

Reducer.

• The combiner runs locally on the Mapper output, performing partial

aggregation before sending the data to the Reducer. This reduces the

bandwidth needed for transferring data between the Mapper and

Reducer.

• Do We Need a Combiner?

▪ No, a combiner is not required, but it can significantly reduce bandwidth.

• The Combiner is essentially a "mini-reducer" that runs on the output of

the Mapper and performs partial aggregation, minimizing the amount of

data sent to the Reducer.

55

https://ataghinezhad.github.io/

▪ Can the Reducer Act as a Combiner?

• Yes, in some cases, the same function that you use in the Reducer can

also act as the Combiner.

▪ In practice, if the logic of your Reducer can be applied locally to the

Mapper output, it will help in reducing the volume of data transferred.

▪ In the case of simple aggregations like sum or count, the Reducer's

code is identical to the Combiner's code. You don't need to define a

separate combiner.

▪ Simple Runner Class for MapReduce

• To run the above logic (Combiner, Mapper, Reducer), all that is needed is

a simple runner class.

▪ This class specifies the components (Mapper, Reducer, Combiner)

to be used in the job.

▪ It also defines input/output directories for the MapReduce job.

56

https://ataghinezhad.github.io/

▪ Sometimes you need multiple steps to express your

design

▪ MapReduce does not directly allow for this, but there are

solutions that do

▪ Hadoop YARN allows for a Directed Acyclic Graph of

nodes

▪ Oozie also allows for a graph of nodes

57

https://ataghinezhad.github.io/

Fetch

Data

Process

Data A

Proces

s Data

B

MergeInput Output

58

https://ataghinezhad.github.io/

▪ MapReduce provides a simple way to scale your application

▪ Scales out to more machines, rather than scaling up

▪ Effortlessly scale from a single machine to thousands

▪ Fault tolerant & High performance

▪ If you can fit your use case to its paradigm, scaling is handled by the

framework

