
1

https://ataghinezhad.github.io/
▪ Chapter 6:Organization: Scaling Your Organization for Modern 

Applications

Mail:

a0taghinezhad@gmail.com

By Dr. Taghinezhad

mailto:a0taghinezhad@gmail.com




3

https://ataghinezhad.github.io/

•Purpose: To explore the concept of service ownership in a 

large-scale, service-based application and the necessity of 

structured ownership for effective system management.

•Key Topics: Single Team Owned Service Architecture 

(STOSA), service ownership principles, benefits of clear 

ownership. 



4

https://ataghinezhad.github.io/

Service Ownership: A Key to Team Accountability

•Defines team responsibility for a service lifecycle 

(design to maintenance).

•Enables division of complex applications across 

teams.

•Structured ownership reduces ambiguity and 

boosts accountability.



5

https://ataghinezhad.github.io/

• Definition: STOSA is an organizational and 

architectural approach where a single, dedicated 

team manages each service within an application.

• Objective: To establish clear ownership and 

accountability, reduce dependencies, and 

promote efficient, independent development 

within a large organization.



6

https://ataghinezhad.github.io/

▪ STOSA Compliance: Key Criteria

1. Service-Based Architecture

1. Modular design with independent services.

2. Multiple Development Teams

1. 3–8 engineers per team for optimal management.

2. Each service is assigned to a single team.

3. Unique Service Ownership

1. One team per service; no shared ownership.

2. Ownership is clearly documented and accessible.

4. End-to-End Responsibility

1. Teams manage:

1. Design & Architecture

2. Development & Testing

3. Deployment & Monitoring

4. Incident Resolution



7

https://ataghinezhad.github.io/

▪ STOSA Compliance: Additional Criteria

• 5. Well-Defined Boundaries & APIs

▪ Services interact via documented APIs.

▪ Minimizes cross-team dependencies, ensuring clear communication.

▪ STOSA Systems:

• STOSA Application: Uniform services meeting criteria.

• STOSA Organization: Teams follow STOSA rules, enhancing 

accountability.

• Example: 12 services (A-L) managed by 5 teams, each with clear 

ownership.

6. Data Ownership

6. Services manage their own data via encapsulation.

7. External data accessed only through APIs.

7. Service-Level Agreements (SLAs)

6. Define service performance expectations.

7. SLA violations monitored and addressed by responsible teams.



8

https://ataghinezhad.github.io/

▪ STOSA-Based System Characteristics

• STOSA Application:

• All services meet STOSA criteria for uniformity and predictable 

interactions.

• STOSA Organization:

• Teams adhere to STOSA rules, enabling streamlined management 

and accountability.



9

https://ataghinezhad.github.io/

• STOSA Example:

• An application with twelve services (A through L), managed by five 

teams.

• Every service has one owner; no overlapping responsibilities.

• Clear ownership allows efficient management, direct points of 

contact, and structured incident responses.



10

https://ataghinezhad.github.io/

• Non-STOSA Example:

• Service I lacks ownership.

• Services C and D are managed by multiple teams.

• Result: Confusion, delays, and unstructured problem-solving.



11

https://ataghinezhad.github.io/

•Scalability: STOSA-based applications can grow in both size 

and complexity, managed effectively by larger development 

teams.

•Complexity Management: STOSA distributes the 

complexity of large applications across multiple teams, with 

each team clearly owning a subset of services.

•Clear Ownership and Responsibility: Defined ownership 

across teams ensures accountability, facilitating efficient 

troubleshooting and development processes.

•Supportable Interfaces: Documented and supportable 

interfaces promote interoperability and maintainability as the 

application scales. 



12

https://ataghinezhad.github.io/

•Ownership Definition: A service-owning team in a STOSA structure is 

entirely accountable for all aspects of the service, regardless of 

dependencies on other teams (e.g., for infrastructure support).

•Responsibilities:

1.API Design: Complete management of all APIs, internal and external, 

including design, implementation, testing, and version control.

2.Service Development: Ownership of business logic, implementation, 

and testing specific to the service.

3.Data Management: Complete responsibility for the service’s data, 

including schemas, storage, and access patterns.

4.Deployment Management: Planning and execution of service 

updates, ensuring stable deployment with rollback procedures if 

necessary.

5.Deployment Windows: Determining safe deployment times, 

adhering to company-wide blackout periods and specific service 

windows.



13

https://ataghinezhad.github.io/

•Responsibilities (Cont.):
6. Infrastructure Changes: Adjusting production infrastructure as 

needed for optimal performance (e.g., load balancing).

7. Environment Management: Overseeing production and non-

production environments for testing, staging, and deployment.

8. Service SLAs: Setting, monitoring, and ensuring compliance with 

SLAs, with proactive responses to violations.

9. Monitoring: Establishing consistent monitoring, especially around SLA 

metrics and regular review of service health.

10. Incident Response: Implementing on-call rotation, managing 

notifications, and ensuring timely incident handling.

11. Reporting: Providing internal reports on operational health and status 

updates to other teams and management.



14

https://ataghinezhad.github.io/

• Shared Responsibilities: In many cases, infrastructure 

elements like servers, tooling, and databases are managed 

by central core teams.

• Servers/Hardware: Infrastructure typically managed by 

operations or cloud providers.

• Tooling: Deployment, monitoring, and incident 

management tools are often centralized for consistency.

• Databases: While the core database infrastructure may be 

managed centrally, data responsibility remains with the 

owning team.



15

https://ataghinezhad.github.io/

▪ Team Structure

• Service-owning teams are peers in the STOSA structure.

• Supported by core teams (e.g., operations, databases, tooling) that provide:

• Uniform infrastructure and tooling support.

• No direct responsibility for service outcomes.

▪ Culture of Accountability

• Service-owning teams retain full responsibility for their service, even if:

• Failures result from dependencies (e.g., tools managed by another 

team).

• Fosters ownership and proactive problem resolution.

Example:

•Deployment fails due to an external tool issue.

•Service-owning team remains accountable for restoring 

service health.



16

https://ataghinezhad.github.io/

▪ Flexibility & Advantages of Core Services

• Flexibility in Core Services

▪ Teams can use alternative resources (e.g., non-standard 

databases/cloud providers) if they meet organizational standards.

▪ Provides autonomy in service management.

• Advantages of Core Services

▪ Reduces operational burden for service teams.

▪ Central teams focus on delivering high-quality, customer-centric 

tools to retain users.

• Encouraging Buy-In

▪ Perceived or actual choice in core services boosts engagement 

and satisfaction.

▪ Standardized core services become essential in larger 

organizations but should remain team-focused.





18

https://ataghinezhad.github.io/

▪ In modern distributed systems with large, complex 

applications, maintaining availability is crucial. 

• A failure in a single service can trigger a cascade 

failure, leading to the failure of other dependent 

services. 

▪ especially problematic when the failure of a non-

critical service results in the disruption of mission-

critical services. 

▪ To manage this complexity and prioritize service 

availability, service tiers are introduced.



19

https://ataghinezhad.github.io/

▪ Service Dependencies & Cascade Failures

• Interconnected Services

▪ Large applications rely on multiple interdependent services.

▪ A single service failure can cascade, affecting dependent systems.

▪ Example of Cascading Failure

• Failure of non-critical Service D disrupts mission-critical Service A, 

leading to widespread outages.

• Understanding & Mitigating Cascade Failures

▪ Figures 7-1 & 7-2: Illustrate minor failures causing large-scale outages.

▪ Resiliency solutions:

• Add safeguards between services.

• Challenge: Increased complexity and cost.

▪ Key Question:

• How to distinguish critical service failures from non-critical ones?



20

https://ataghinezhad.github.io/

▪ Mitigating Cascade Failures

• Safeguards Between Services

• To reduce the risk of cascading failures, safeguards can be implemented to 

isolate failures and prevent them from propagating.

▪ Example Safeguard: Circuit Breaker Pattern

• What it does: The circuit breaker monitors a service's response and halts 

communication if the service shows signs of failure.

• How it works:

• If Service D fails or slows down, the circuit breaker opens, temporarily cutting 

off Service A’s reliance on it.

• Service A can operate in a degraded mode, such as using cached or default 

data instead of waiting indefinitely for Service D.

• The circuit breaker periodically tests Service D to see if it has recovered, 

then resumes normal operations.



21

https://ataghinezhad.github.io/

▪ Service Tiers: Classifying Service Criticality

• Definition:

• Labels used to categorize services based on their importance to business 

operations.

• Purpose:

• Distinguish mission-critical services from less essential ones.

• Manage application complexity and maintain availability.

• Benefits:

• Clarifies the importance of individual services.

• Identifies critical dependencies to prioritize resiliency efforts.



22

https://ataghinezhad.github.io/

▪ Service Tier Classification: all services are assigned a tier. 

▪ Tier 1: Mission-Critical Services

• Definition: Essential for application functionality; failure disrupts operations.

• Examples:

• Login Service

• Credit Card Processor

• Permission Service

• Order Accepting Service

• Impact of Failure: High; immediate resolution required.

▪ Tier 2: Important Services

• Definition: Degrade user experience but do not halt system usage.

• Examples:

• Search Service

• Order Fulfillment Service

• Impact of Failure: Moderate; system remains functional but less effective.



23

https://ataghinezhad.github.io/

▪ Service Tier Classification (Tier 3 & Tier 4)

▪ Tier 3: Minimal Impact Services

• Definition: Failures have minor or unnoticed effects on users and operations.

• Examples:

• Customer Icon Service

• Recommendations Service

• Message of the Day Service

• Impact of Failure: Low; minor disruption without significant consequences.

▪ Tier 4: Non-Essential Backend Services

• Definition: Failures have no noticeable impact on customers or immediate 

operations.

• Examples:

• Sales Report Generator Service

• Marketing Email Sending Service

• Impact of Failure: Minimal; disruptions are negligible for users and business.



24

https://ataghinezhad.github.io/



25

https://ataghinezhad.github.io/

▪ Tier 1: Mission-Critical Services

• Website Frontend Service: Displays the storefront; downtime makes the store 

inaccessible.

• Catalog View Service: Supplies product details to the frontend; critical for 

usability.

• Catalog Database Service: Stores product data; site unusable without it.

• Checkout Service: Manages purchases; impacts revenue directly.

▪ Tier 2: Important but Non-Critical

• Catalog Search Service: Supports product search; users can navigate manually if 

unavailable.

▪ Tier 3: Minor Impact

• Catalog Editing Service: Allows staff to update entries; minor customer impact.

• Order Shipping Service: Handles packaging; short outages have minimal effect.

▪ Tier 4: Minimal Impact

• Weekly Order Report: Generates sales reports; delays have no customer impact.



26

https://ataghinezhad.github.io/

1. Tier 1 Services (Mission-Critical)

1. Website Frontend Service:

1. Role: Generates and displays the online storefront, handling the main interaction 

between the user and the site.

2. Reason for Tier 1: If unavailable, the entire store is inaccessible to customers, 

significantly impacting their experience.

2. Catalog View Service:

1. Role: Reads from the catalog database to supply product details to the frontend 

service.

2. Reason for Tier 1: Customers cannot view products without this service, heavily 

impacting usability.

3. Catalog Database Service:

1. Role: Stores all product information.

2. Reason for Tier 1: Without access to the catalog data, no product can be 

displayed, making the site unusable.

4. Checkout Service:

1. Role: Manages the customer checkout process.

2. Reason for Tier 1: Prevents customers from completing purchases, directly 

affecting revenue.



27

https://ataghinezhad.github.io/

▪ Benefits of Service Tiering

▪ Key Aspects

1. Expectations:

1. Define SLAs by tier (e.g., highest uptime 

for Tier 1).

2. Responsiveness:

1. Align response based on severity and tier:

1. Immediate action for Tier 1 high-

severity issues.

2. Tier 1 medium-severity takes 

precedence over Tier 3 high-severity 

(see Fig. 7-5).

3. Dependencies:

1. Evaluate tier levels to mitigate cascading 

risks.

2. Avoid critical (Tier 1) services depending 

on non-critical (Tier 3) ones.



28

https://ataghinezhad.github.io/

1. Efficient Resource Allocation: High-priority resources are focused on 

Tier 1 services, while less critical services receive proportionate 

attention.

2. Improved Response Planning: Tiers help prioritize alert notifications, 

set response schedules, and outline escalation paths.

3. Informed SLA Development: With tier-based SLAs, businesses can 

define clear expectations for availability and responsiveness.

▪ Service tiering ultimately supports system resilience, prioritizing critical 

operations while managing costs and complexity for less impactful 

services.



29

https://ataghinezhad.github.io/

▪ Dependency Criticality in Service Tiers

• Understanding dependency criticality is key when building a 

service. Figure 7-6 highlights the relationship between a service’s 

tier level and that of its dependencies:

• Critical Dependency: When your service tier (lower number) is 

more critical than the dependent service tier (higher number).

• Noncritical Dependency: When your service tier is less critical 

(higher number) than the dependent service tier.



30

https://ataghinezhad.github.io/

▪ Critical Dependency

• If a dependency is critical, the service must be designed to handle 

dependency failures gracefully to ensure minimal impact on users.

• Example:

• Consider the Website Frontend Service (Tier 1) in an online store.

• It depends on the Price & Shipping Cost Calculator (PSCC)

service (Tier 2) to fetch current product prices.

• If the PriceShipingCostCalculator service is down, the frontend 

service must still function and could use alternative strategies:

• This approach allows for graceful degradation—even if the 

experience is diminished, customers can still interact with the site.

• Display a cached price if available.

• Show the product page without a price, with a message like 

“Price not currently available” or “Add to cart to see current price.”



31

https://ataghinezhad.github.io/

▪ Noncritical Dependency

• If a dependency is noncritical, failures 

can be tolerated with minimal 

handling.

• Example:

• The Weekly Order Report Service

(Tier 4) depends on the Order 

Management Service (Tier 1) for 

data.

• If the Order Management Service is 

unavailable, it is acceptable for the 

Weekly Order Report Service to fail 

temporarily.

• Given that Order Management is a 

high-tier service, its issues will be 

resolved quickly, and the reporting 

service can resume operation without 

specific handling.



32

https://ataghinezhad.github.io/

▪ Service tiers provide a clear way to establish expectations 

for availability, responsiveness, and reliability across 

dependencies:

• Enhanced Clarity: Service owners and developers 

understand criticality expectations and can manage 

dependencies appropriately.

• Simplified Communication: Service tiers enable 

straightforward communication, reducing the risk of 

misunderstandings and service misconfigurations.

• Resilience Planning: By knowing dependency tiers, 

developers can design appropriate fallback 

mechanisms or allow graceful degradation only where 

necessary.



33

https://ataghinezhad.github.io/


