
1

https://ataghinezhad.github.io/

Mail:

a0taghinezhad@gmail.com

By Dr. Taghinezhad

mailto:a0taghinezhad@gmail.com




3

https://ataghinezhad.github.io/

• Microservice architectures introduce several 

interdependent services, which makes the system 

vulnerable to service failures.

• Challenge: The more services involved, the 

higher the chances of failure, and any failure 

could cascade to dependent services, potentially 

destabilizing the entire application.

• Objective: To develop strategies to mitigate 

cascading failures and ensure application 

stability.



4

https://ataghinezhad.github.io/

• Cascading failure occurs when the failure of one service triggers failures in 

dependent services, propagating throughout the system.

▪ Example Scenario of a Cascading Failure (Figure):

• Our Service depends on Service A, Service B, and Service C.

▪ Consumer 1 and Consumer 2 depend on Our Service.

▪ If Service A fails, Our Service may fail. This, in turn, can cause both 

Consumer 1 and Consumer 2 to fail.

• Impact: A single failure can disrupt multiple components if left unchecked.

▪ Key Problem:

• High dependency between services can make the entire system fragile.

• A small fault can ripple through the system, affecting business processes 

and customer experiences.



5

https://ataghinezhad.github.io/

▪ Developing Predictable, Understandable, and Reasonable 

Responses Aim to respond predictably to failures, without 

propagating the chaos upward in the service chain.

▪ Predictable Response

• Definition: A predictable response is a planned and controlled 

outcome for specific failure conditions.

• Example of Predictable Responses:

•For a division by zero request:

•Predictable Response: "Error: Invalid operation"

•Unpredictable Response: Returning garbage 

values (e.g., 50000000000).

•When dependencies fail, your service should 

generate planned error messages, not unpredictable 

outputs.



6

https://ataghinezhad.github.io/

• Prevents cascading failures by ensuring 

upstream services handle your service 

gracefully.

• Avoids injecting inconsistent or invalid 

data into business processes, maintaining 

data integrity.

• A predictable error message (e.g., “Service 

Unavailable”) informs the client of the 

issue, allowing it to take appropriate 

actions.



7

https://ataghinezhad.github.io/

•Definition:

•An understandable response follows the agreed-

upon contract or format defined by your API.

•API Contract:

•Clearly defines what responses are expected, even in 

failure scenarios.

•Example: If a service fails to deliver an output, it could 

return "Error: Unable to process request“ rather than 

breaking the API contract. 

▪ Best Practices:

• Do not violate the API contract due to misbehaving 

dependencies.

• Ensure your API supports graceful degradation by 

providing fallback responses when needed.



8

https://ataghinezhad.github.io/

For example, a service might call an "expired account" service to retrieve a 

list of accounts ready for deletion, then proceed to delete each account.



9

https://ataghinezhad.github.io/

▪ Reasonable Response

• Definition:

A reasonable response accurately reflects the situation of the 

service.

Examples of Reasonable Responses:

•If asked to perform "3 + 5":

•Reasonable Response: "8"

•If a dependency fails:

•Reasonable Response: "Sorry, I couldn’t complete 

your request. Please try again later."

Unreasonable Response:

•Returning "red" or other irrelevant data for a 

mathematical operation request.



10

https://ataghinezhad.github.io/

•Prevents damaging side effects:

•Example: A service asked for expired accounts

should return "None" if it encounters an error, not a 

list of all accounts in the system.

•Impact of an Unreasonable Response:

•If all accounts were returned mistakenly, a 

downstream service might delete all user 

accounts, causing catastrophic damage.



11

https://ataghinezhad.github.io/

1.Graceful Degradation:

•If a dependent service fails, degrade functionality without crashing 

the whole service.

2.Circuit Breaker Pattern:

•Prevents continuous requests to a failing service by cutting off 

communication temporarily.

•Example: If Service A fails, the circuit breaker stops Service B from 

making further requests, preventing further cascading failures.

3.Fallback Mechanisms:

•Provide alternative responses when dependencies fail.

•Example: If a weather service fails, return "Weather data is currently 

unavailable" instead of crashing the service.

4.Timeouts and Retries:

•Implement timeouts to avoid waiting indefinitely for a response from 

a failing service.

•Use limited retries to handle temporary failures.



12

https://ataghinezhad.github.io/

Concept Definition Examples Best Practices

Cascading Failure Failure of one 

service causes 

others to fail

Service A’s failure 

leads to Our 

Service’s failure

Use circuit breaker 

and fallback 

mechanisms

Predictable 

Response

Planned response to 

failure scenarios

"Service 

Unavailable" for 

downtime

Avoid unpredictable 

garbage responses

Understandable 

Response

Follows agreed API 

contract

"Error: Invalid 

request" for bad 

input

Ensure API always 

returns meaningful 

errors

Reasonable 

Response

Reflects the service’s 

real state

"Please try again 

later" during failure

Avoid returning 

irrelevant data (e.g., 

"red")

Graceful 

Degradation

Maintain partial 

functionality

Product pages 

shown without 

checkout

Degrade service 

functionality 

selectively

Circuit Breaker 

Pattern

Temporarily cut off 

requests to a failing 

service

Stop retries after a 

set limit

Prevent cascading 

failures

Timeouts and 

Retries

Limit wait time for 

responses

Retry a few times 

after failure

Avoid infinite wait 

loops



13

https://ataghinezhad.github.io/

▪ Introduction to Failure Detection

• In a microservice-based system, determining when a 

dependency is failing is crucial to prevent cascading 

service failures and ensure application stability. 

However, different types of failures require different 

detection techniques, and each type of failure demands 

a tailored response.



14

https://ataghinezhad.github.io/

▪ Failures can manifest in several ways, ordered from easiest to hardest 

to detect:

1. Garbled Response

1. The response is in an unrecognizable or corrupted format (e.g., 

syntax errors).

2. Immediate detection is possible since the data is unreadable.

2. Response Indicated a Fatal Error

1. A response contains information about a critical failure within the 

service (e.g., invalid request or internal processing error).

2. This failure typically occurs within the service logic, not the 

communication layer.

3. Unexpected Results

1. The operation executes successfully, but the data returned is 

incorrect or unexpected.



15

https://ataghinezhad.github.io/

4. Result Out of Expected Bounds

1. The data is in the correct format but falls outside the reasonable or 

expected range.

2. Example: If the number of days since January 1 is returned as 843, 

it’s out of a plausible range.

5. No Response

•The request is sent, but no response is received.

•Possible causes: network issues, service crash, or service outage.

6. Slow Response

1. The response arrives but takes longer than expected, possibly due 

to network congestion or resource exhaustion.

2. It is the hardest to handle since timing can be inconsistent.



16

https://ataghinezhad.github.io/

▪ Different failure modes call for specific strategies to maintain stability and 

usability.

• 3.1 Graceful Degradation: If a service dependency fails, perform 

partial operations to maintain functionality.

▪ Example: Display cached or limited data if a backend service is 

unavailable.

• 3.2 Graceful Backoff: When failure renders continued operation 

impossible, find an alternative, less impactful way to respond.

▪ Example: Redirect users to a maintenance page with relevant 

messaging instead of a generic error.

• 3.3 Fail as Early as Possible: If a request is certain to fail, halt 

further processing immediately to save resources.

▪ Example: Check for invalid inputs (like division by zero) at the 

earliest step to prevent complex failures later.



17

https://ataghinezhad.github.io/

▪ Why Fail Early?

1.Resource Conservation: Prevent unnecessary 

operations and API calls that consume resources.

2.Improved Responsiveness: Immediate failure 

lets users or calling services react faster.

3.Simplified Error Handling: Early detection 

makes issues easier to diagnose and resolve.



18

https://ataghinezhad.github.io/

▪ 4. Customer-Caused Errors and Service Limits

• Validate user input early to prevent resource-intensive 

operations based on invalid requests.

▪ Example: A service that retrieves accounts should 

cap requests at a reasonable limit (e.g., 5,000 

accounts). If the request exceeds the limit, return an 

error immediately.

▪ 5. Service Limits

• Define service limitations clearly in your API contract.

▪ Example: If the service can handle only a limited 

number of items per request, this limit should be 

documented and enforced.



19

https://ataghinezhad.github.io/

▪ 5. Detecting and Responding to Slow Responses

• Challenges: Determining how slow is “too slow” can be 

difficult.

• Mitigation Strategies:

• Use timeouts and circuit breakers to prevent endless 

waiting.

• Monitor response times to identify bottlenecks and 

adjust policies proactively.



20

https://ataghinezhad.github.io/

▪ Handling service failures effectively requires:

• Proactive failure detection using a variety of 

techniques.

• Appropriate error handling strategies such as 

graceful degradation, backoff, and early failure.

• Communication and limits defined in service 

contracts to prevent customer-caused errors.

• By combining these strategies, a microservice-

based application can maintain stability even in 

the face of failures, ensuring predictable, 

understandable, and reasonable service behavior.


