
1

https://ataghinezhad.github.io/

Mail:

a0taghinezhad@gmail.com

By Dr. Taghinezhad

mailto:a0taghinezhad@gmail.com




3

https://ataghinezhad.github.io/

•As applications transition to service-based 

architectures, the placement of data and state 

becomes critical.

•Services are categorized as Stateless or Stateful

based on whether they maintain internal data or 

state. 



4

https://ataghinezhad.github.io/

Stateless:

• Services that do not maintain any internal data or state 

(session information between requests). 

• All required data is passed in through requests. 

• Each request is independent and contains all necessary

information

Stateful :

•Maintain session/state information 

•Remember information from previous requests 

•Require careful deployment planning 

•Need state synchronization mechanisms 



5

https://ataghinezhad.github.io/

Definition:

•Maintain session/state information 

•Remember information from previous requests 

•Require careful deployment planning 

•Need state synchronization mechanisms 
Stateful Service Example: Shopping Cart Service

Python
class ShoppingCartService:

def __init__(self): 
self.active_carts = {}# In-memory state

def add_item(self, cart_id, item): 
if cart_id not in self.active_carts: 
self.active_carts[cart_id] = [] 
self.active_carts[cart_id].append(item) 

def get_cart(self, cart_id): 
return self.active_carts.get(cart_id, [])



6

https://ataghinezhad.github.io/

•Benefits:

•Scalability: Stateless nature allows easy horizontal and 

vertical scaling by adding more instances.

•Caching Capabilities: Since the service does not store 

state, frontend caches can handle requests more efficiently.

•Flexibility: Easier to deploy, maintain, and adjust resources 

dynamically.

•Limitations:

•Not every service can be designed statelessly.
•Real-Time Collaboration Requirements:

• Needs maintained: 

• Current document content

• User presence information

• Cursor positions

• Edit history

• Version control

Why Stateless Fails:?



7

https://ataghinezhad.github.io/

1. Scalability:

Stateless Version: 

• Each request to /calculate-fare is completely independent

• You can deploy unlimited instances since there's no shared state and use load 

balancers

Stateful Problems: The StatefulAirlinePricing keeps user sessions, search history, and miles 

balances in memory

• If you have multiple servers: 

• User searches on Server A, build up session data

• Next request goes to Server B, which has no knowledge of their session

• Would need complex session replication or sticky sessions

2. Caching Capabilities:

• Stateless Version: 

• Identical requests always produce identical results

• CDNs can cache common combinations

• Multiple users can benefit from the same cached result

• Stateful Problems: 

• Can't effectively cache because: 

• Results depend on session state

• Need to invalidate cache when session changes



8

https://ataghinezhad.github.io/

3. Flexibility:

• Stateless Version: 

• Deploy new instances instantly

• Update pricing logic without worrying about existing sessions

• Scale down instances during off-peak hours

• Easy to test since inputs fully determine outputs

• Stateful Problems: 

• Deployment challenges: 

• Need to migrate existing sessions

• Can't easily shut down instances with active sessions

• Memory leaks from abandoned sessions

• Complex testing due to state dependencies



9

https://ataghinezhad.github.io/

1. E-Commerce Platform

Stateless Service Example: Product Catalog Service

Python

@app.route('/products/<product_id>’) 
def get_product(product_id): 

# Each request is independent # No need to know about 
previous requests
product = database.fetch_product(product_id) 
return product @app.route('/products/search’) 

def search_products(query): 
# Search request contains all needed parameters
# No session or state needed
results = database.search(query) 
return results



10

https://ataghinezhad.github.io/

▪ Use of Data Localization in Stateful Services

• Localize data as much as possible.

• Services and data stores should manage only the data they need for their jobs.

▪ Benefits of Localizing Data:

1. Reduced Size of Individual Datasets:

1. Splitting data across datasets makes each dataset smaller.

2. Smaller datasets mean less interaction, making scalability easier (functiona
l partitioning).

2. Localized Access:

1. Access only the necessary data within records.

2. Reduces the amount of unneeded data from queries.

3. Optimized Access Methods:

1. Optimize the type of data store for each dataset.

2. Choose appropriate data stores (relational vs. key/value stores).



11

https://ataghinezhad.github.io/

• Definition: It has other meanings, but in this context, partitioning divides large 

datasets into smaller segments to improve access, scalability, and performance.

• Types of Data Partitioning:
o Functional Partitioning: Splits data by function, not size (e.g., orders, users, 

products).

o Key-Based Partitioning: Uses a key (e.g., account ID) to distribute data across 

multiple partitions.

• Example of Key-Based Partitioning:
• Distributes data using a key (e.g., account ID).

• Accounts A–D in one database, E–K in 
another, etc.
• This approach allows better 

management of large datasets.



12

https://ataghinezhad.github.io/

1. Increased Application Complexity: Retrieving data becomes more complex, 

requiring knowledge of where the data resides.

2. Cross-Partition Queries: Analyzing data across multiple partitions becomes 

difficult.

3. Skewed Partition Usage: Poor partition key selection can lead to uneven load 

distribution.

1. If you choose the wrong key, you can partitioning skew the usage of 

your database partitions, making some partitions run hotter and 

others colder, thus reducing the effectiveness of the partitioning 

while complicating your database management and maintenance. 



13

https://ataghinezhad.github.io/

Avoid using account name or account ID as a partition key due to their potential to change in size over ti
me (Figure)

1. Initial Size vs. Growth:

1. Small Beginnings: Accounts can start small and fit well within a partition.

2. Growth Over Time: As accounts grow, they can overwhelm the partition they reside in.

3. Load Imbalance: Growing accounts can disrupt the balance, requiring repartitioning.

4. Size Limits: A single large account can exceed the capacity of a single partition, causing partitio
ning schemes to fail.

2. Repartitioning:

1. Need for Adjustment: Continuous growth necessitates repartitioning to maintain balance.

2. Limitation: Even repartitioning can't solve the issue if an account becomes too large for any sin
gle partition.



14

https://ataghinezhad.github.io/

1. Repartitioning Needs:

Rebalancing partitions is often complicated, especially when data grows 

unexpectedly.

• Best Practice:

o Choose a partition key that ensures consistent partition size over time 

to minimize repartitioning.

o Prefer many small elements mapped to larger partitions, allowing for 

easier adjustments.



15

https://ataghinezhad.github.io/

▪ Best Practice: partition key that ensures consistent partition Main Idea:

• Ensure consistent partition sizes over time to minimize the need for repartit
ioning by choosing appropriate partition keys and strategies.

• Scenario: Managing user activity logs in a high-traffic web application.

• Better Partition Key Choice: Instead of using user IDs as partition keys (which might vary
greatly in activity volume over time), use timestamps to partition the logs.

1. Consistent Partition Size:

1. Example: Partitioning logs by time intervals (e.g., daily or hourly) ensures each partition c
overs a similar volume of data over time.

2. Result: Balances load across partitions consistently, avoiding hotspots.

▪ -- SQL Table Definition for Partitioned Logs

CREATE TABLE user_activity_logs ( log_id SERIAL PRIMARY KEY, user_id INT, activity TEXT, log_time
TIMESTAMP ) PARTITION BY RANGE (log_time); -

- Creating Partitions

CREATE TABLE user_activity_logs_2024_01 PARTITION OF user_activity_logs FOR VALUES FROM
('2024-01-01 00:00:00') TO ('2024-02-01 00:00:00’); 

CREATE TABLE user_activity_logs_2024_02 PARTITION OF user_activity_logs FOR VALUES FROM
('2024-02-01 00:00:00') TO ('2024-03-01 00:00:00');



16

https://ataghinezhad.github.io/

Concept Definition Examples Benefits

Stateless Services No internal state REST APIs, OAuth Scalability, caching, 

flexibility

Stateful Services Maintains internal 

state

Databases, 

shopping carts

Data localization, 

optimized access

Functional 

Partitioning

Split by function Orders, users, 

products

Manageable 

datasets

Key-Based 

Partitioning

Split by key Alphabetical 

partitioning

Improved scalability

Partitioning 

Challenges

Complexity, skewed 

usage

Social media data 

retrieval

Avoid overloading 

specific partitions



17

https://ataghinezhad.github.io/

• Growth is a natural aspect of any modern application.

• Areas of growth include:

• Traffic requirements – Increased number of users or 

requests.

• Application size and complexity – More features and 

interconnected modules.

• Team size – More developers contributing to the 

codebase.



18

https://ataghinezhad.github.io/

• Often, teams address scalability issues only after problems become 

critical. At this stage, solutions are limited, and easy remedies no longer 

work.

• Emergency responses may be more expensive, disruptive, or complex.

▪ Consequences of ignoring scalability early:

• Traffic spikes without preparation:

Example: Social media platforms crashing during viral events (e.g., a 

trending global news event).

• Increased technical debt:

Example: A platform forced to implement last-minute fixes, resulting in 

poorly designed code.

• Costly disruptions:

Example: A banking application failing due to unplanned growth, causing 

customer complaints and revenue loss.



19

https://ataghinezhad.github.io/

•Architectural Lock-In:

•Without anticipating growth, teams make decisions that constrain 

future scaling options.

o Proactive Planning:

o While designing new applications or enhancing existing 

ones, consider:

•How the application will grow (users, features, data).

•Scalability walls: What are the first barriers you’ll encounter as 

the system grows?

•Mitigation strategies: How will you address barriers without 

significant rearchitecting?



20

https://ataghinezhad.github.io/

•Capacity for Growth:

•Build in room for scaling from the start to avoid 

being reactive later.

•First Scalability Wall:

•Identify the first constraint (e.g., database 

capacity, server limits) the application will hit.

•Strategies to Overcome Barriers:

•Plan for incremental improvements rather than 

major architectural overhauls.



21

https://ataghinezhad.github.io/

•Prevents costly disruptions:

Anticipating growth allows smoother transitions during scaling 

phases.

•Increases system flexibility:

Applications designed with scalability in mind adapt more 

easily to change.

•Supports business growth:

Scaling bottlenecks can be removed before they become 

critical, enabling business continuity. 



22

https://ataghinezhad.github.io/


