
1

https://ataghinezhad.github.io/

Mail:

a0taghinezhad@gmail.com

By Dr. Taghinezhad

mailto:a0taghinezhad@gmail.com




3

https://ataghinezhad.github.io/

• Modern Software Needs: Today’s applications demand 

scalability and high availability.

• Challenge with Monoliths: Traditional monolithic applications 

don’t support these demands. 

• Because, all business logic is bundled into a single unit, 

which limits flexibility and leads to conflicts during 

development (developers step on one another’s code).

• Solution: Move to service-oriented architectures or 

microservices that break down the application into smaller, 

independently deployable units.



4

https://ataghinezhad.github.io/

• Monolithic Applications (Figure 3-1):

o All functionality in a single 

component

o Scalability bottlenecks, especially when 

multiple teams work on the same codebase

o Lack of Visibility of Code when 

developers work on the same module

o Impact on Code Quality: merging code 

frequently with multiple developers leads to 

spaghetti code

o Intertwined code, making changes 

complex and risky



5

https://ataghinezhad.github.io/

• Service-Based Applications 

(Figure 3-2):

o Functionality split into 

independent services

o Clear ownership of services by 

distinct teams, each team has a 

clear nonoverlapping set of 

respnsibilities

o Reduced conflicts, better 

scalability, and independent 

deployments



6

https://ataghinezhad.github.io/

• 1. Scaling Decisions:

o Each service can be scaled independently.

• 2. Team Assignment and Focus:

o Teams can focus on specific scaling and availability requirements of their 

systems in small without affecting others.

• 3. Complexity Localization:

o Each service is a "black box" for other teams, reducing the cognitive load. 

Other developers know the capabilities of the service not the details of it.

• 4. Easier Testing:

o Service-based systems allow for more isolated, targeted testing.

o Service-oriented architectures can increase system complexity if service 

boundaries are poorly designed, potentially reducing scalability and 

availability.



7

https://ataghinezhad.github.io/

▪ If two teams develop two services, left service teams know about their 

services completely, but what should they know about the right service?

▪ As a start, the team needs to know the following:

• The capabilities provided by the service 

• How to call those capabilities (the API syntax) 

• The meanings and results of calling those capabilities (the API 

semantics)

• What doesn’t it need to know about the Right Service?

Figure.3.3. we see two services owned by two distinct teams. The Left
Service is consuming the capabilities exposed by the Right Service.



8

https://ataghinezhad.github.io/

▪ What doesn’t it need to know about the Right Service?

1. Service Transparency

1. One service (e.g., Left Service) does not need to know whether the other service 

(e.g., Right Service) is composed of a single service or multiple subservices.

2. Dependency Abstraction

1. The Left Service does not need to be aware of the dependencies used by the 

Right Service to perform its tasks.

3. Technology Agnosticism

1. The implementation details, such as the programming language of the Right 

Service, are irrelevant to the Left Service.

2. It also does not need to know the hardware or system infrastructure required to 

run the Right Service.

4. Service Operations

1. The Left Service does not need to know who operates the Right Service but must 

know how to contact the owner to report issues or request support.

Figure 3-4. Left Service does not what’s inside the Right Service,is it complex or simple



9

https://ataghinezhad.github.io/

• Definition of a Service:

• Provides specific capabilities (e.g., billing, account 

creation, notification)

• A standalone component (critical for independent 

functionality)

• Owns its code base and data store

• Exposes an API for interaction with other services



10

https://ataghinezhad.github.io/

• the Left Service must be able to depend on a contract that the Right

Service provides.

• This contract describes everything the Left Service needs to use the 

Right Service. 

▪ The contract contains two parts: 

• 1) The capabilities of the service (the API)

▪ What the service does 

▪ How to call it and what each call means 

• 2) The responsiveness of the service 

▪ How often can the API be used? 

▪ When can it be used? 

▪ How fast will the API respond? 

▪ Is the API dependable?

▪ The responsiveness part of the contract is a service-level agreement (SLA)



11

https://ataghinezhad.github.io/

• Service Characteristics:

• Maintains its own code base

• Manages its own data (stored separately)

• Provides capabilities to other services via 

APIs

• Consumes other services’ APIs

• Single team ownership



12

https://ataghinezhad.github.io/

How do you decide when a piece of an application or system 

should be separated into its service?

1.No Single Correct Answer

1. Determining when to split a part of an application into its own service 

depends on the specific needs and goals of the organization.

2. Different companies adopt different approaches:

1.Microservices: Hundreds or thousands of small, independent 

services.

2.Larger Services: Only a few services, each handling a broader 

set of functionalities.

2.Industry Trends Toward Microservices

1. The trend favors smaller microservices with more modular 

functionality.

3.Technological Enablers

1. Tools like Docker and Kubernetes make managing many microservices 

feasible.

2. These technologies provide infrastructure for deploying, scaling, and 

managing large numbers of small, independent services efficiently.



13

https://ataghinezhad.github.io/

When determining service boundaries, factors like 

company organization, culture, and the type of application 

play key roles. 

These guidelines (not strict rules) help to think through 

how to divide an application into services. These boundaries 

may evolve as the industry progresses.



14

https://ataghinezhad.github.io/

1. Specific Business Requirements

• Specific Business Requirements: Regulatory needs (e.g., 

credit card processing)

• Security concerns (e.g., firewalls, validation)

• Access restriction (limit access to sensitive data)

1. Are there specific business needs (e.g., accounting, security, or 

regulatory requirements) that dictate where a service boundary 

must be?

1.Example: In a financial app, regulatory rules might require 

separating Payment and Accounting services to ensure 

compliance and audits.



15

https://ataghinezhad.github.io/

2. Distinct and Separable Team Ownership

• Each service is owned by a single team (3-8 developers)

• Teams handle development, testing, deployment, and 

performance

• Loosens dependencies between teams

1. Is the team responsible for the service’s functionality independent

(e.g., located in another city, on a different floor, or managed 

separately)?

1.Example: A team in a different office might manage a 

Customer Support Service, making it logical to create a 

boundary around that service.



16

https://ataghinezhad.github.io/

3. Naturally Separable Data

1. Can the data managed by the service be separated naturally from other 

data? Will putting that data in a separate store burden the system?

1. Example: An Inventory Service in an e-commerce system may have 

data that’s independent of the Customer Data, making it ideal for 

separation.

• Data Ownership:

• Services must manage their own data

• Data should be accessed only via APIs (no direct access)

• Correct way: Access through service APIs (Figure 3-6)

• Incorrect way: Direct data access between services (Figure 3-7)



17

https://ataghinezhad.github.io/

4. Shared Capabilities and Data

• Services like user identity offer shared capabilities

• Managed by a centralized service, accessed by others

1. Does the service provide shared capabilities used by multiple other 

services, and does it need shared data to operate?

1.Example: An Authentication Service might be shared across 

many parts of an application (like login, payment, and account 

management).



18

https://ataghinezhad.github.io/

• Balance between simplicity and complexity:

• Service size affects operational management

and scalability

• Consider business logic, data management, 

and team ownership

• Optimize based on application needs and 

company culture



19

https://ataghinezhad.github.io/

1. Increased Overall Complexity:

• As you introduce more services, managing the interactions and 

dependencies between them becomes more challenging. This can 

lead to difficulties in understanding the entire application 

architecture.

2. More Failure Opportunities:

• Each service is an independent component. If one service fails, it 

can affect multiple other services that depend on it, leading to 

cascading failures.

3. Harder to Change Services:

• With more consumers for each service, changes to a service can 

have unintended consequences on other services, making it harder 

to evolve the system.

4. Increased Dependencies:

• More services often mean more inter-service dependencies, which 

can complicate deployment and testing processes.



20

https://ataghinezhad.github.io/

• Balance of Services:

• Too few services = Monolith-like issues

• Too many services = Increased complexity

• Trade-offs between service size and 

application complexity



21

https://ataghinezhad.github.io/

Scenario: Imagine you're developing an online food delivery application. You need 

to consider how to break down the application into services.

Too Few Services (Monolith-like Issues):

• Service Structure: You decide to create just three services:

1. User Service (handles user profiles, authentication)

2. Order Service (manages orders and payment processing)

3. Restaurant Service (manages restaurant listings and menus)

Issues:

1. • Tightly Coupled: All three services are tightly coupled. For 

instance, if you need to update the payment processing logic in the 

Order Service, you may inadvertently affect the User Service’s 

authentication flow.

2. • Deployment Challenges: Deploying updates requires taking down 

the entire application, leading to downtime.

3. • Scaling Difficulties: If the Order Service experiences high traffic 

during peak hours, you can’t scale it independently without scaling 

the entire application.



22

https://ataghinezhad.github.io/

Issues: • Scaling Difficulties: inappropriate (Resource 

Allocation When Scaled 3x)

1. Example: Friday Night Traffic Surge: Deep Dive Analysis

▪ 1. Traffic Pattern Analysis

▪ Hourly Order Volume (Friday): -------→

▪ 6 PM - Normal Traffic: 

• User Service: 20% CPU usage 

• Order Service CPU: 90% utilization, 

• Restaurant Service CPU: 30% utilization

▪ Current Solution: Scale everything 3x - Cost: 3x infrastructure for all 

services - Result: Massive waste as 2 services run at 60-70% idle

2 PM - 100 orders/hour (Baseline)

4 PM - 150 orders/hour (+50%)

6 PM - 500 orders/hour (+400%)

8 PM - 800 orders/hour (+700%)

10 PM - 300 orders/hour (+200%)



23

https://ataghinezhad.github.io/

▎Too Many Services (Increased Complexity):

• Service Structure: You decide to break down the application into several smaller 

services:

1. User Service

2. Order Service

3. Restaurant Service

4. Payment Service

5. Notification Service

6. Review Service

7. Delivery Tracking Service

• Issues:

• Increased Complexity: With so many services, understanding how they 

interact becomes difficult. 

• Deployment Overhead: Each service needs to be deployed independently, 

• Monitoring and Debugging: Identifying issues across multiple services 

can be complex and time-consuming



24

https://ataghinezhad.github.io/

1. Define Clear Service Boundaries:

• Identify the core functionalities and business capabilities of your 

application. Services should be cohesive, focusing on a specific domain or 

functionality.

2. Use Domain-Driven Design (DDD):

• Applying DDD principles can help in defining bounded contexts that align 

with business domains, ensuring that services are meaningful and 

manageable.

3. Consider Organizational Structure:

• Align services with team structures. Smaller teams can own specific 

services, fostering accountability and reducing coordination overhead.

4. Evaluate Service Size:

• Aim for a size that allows for simplicity without creating trivial services. A 

service should encapsulate enough functionality to be useful but not so 

much that it becomes complex.

5. Implement Strong Interfaces:

• Define clear and stable APIs for inter-service communication. This helps 

minimize the impact of changes and reduces coupling between services.



25

https://ataghinezhad.github.io/

6. Monitor and Optimize:

• Continuously monitor the performance and interactions between 

services. Use metrics to identify bottlenecks and areas where 

complexity can be reduced.

7. Iterative Approach:

• Start with a few well-defined services and iterate based on 

feedback and changing requirements. Be open to refactoring as 

you learn more about your application’s needs.

8. Documentation and Visualization:

• Maintain clear documentation and architectural diagrams that help 

stakeholders understand the overall architecture and individual 

service responsibilities.



26

https://ataghinezhad.github.io/


