
1

https://ataghinezhad.github.io/

Mail:

a0taghinezhad@gmail.com

By Dr. Taghinezhad

mailto:a0taghinezhad@gmail.com




3

https://ataghinezhad.github.io/

• a MySQL database backup replica being used for 

experimentation, leading to a failure during a primary database 

outage.

• Problem, Can backup replica be used for production, when it 

is experimented ? 

• No, because its setting is changed and it is not longer 

reliable

• Key Lesson: Backup systems must be treated with the same 

rigor as primary systems to ensure availability.

▪ Takeaway: Redundant systems are not just backups; they are 

critical components in maintaining high availability



4

https://ataghinezhad.github.io/

• Concept: "Two mistakes high" from radio-controlled planes.

• Key Idea: Always keep enough "altitude" (resources) to recover from two 

independent mistakes.

• Application: In highly available systems, plan for multiple failures and ensure 

recovery from any combination of mistakes.



5

https://ataghinezhad.github.io/

• Initial Setup: Service designed to handle 1,000 req/sec with 4 nodes (300 req/sec 

each).

• Question: How many nodes do you need to handle your traffic 

demands? Some basic math should come up with a good answer:

• 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑛𝑜𝑑𝑒𝑠_𝑛𝑒𝑒𝑑𝑒𝑑 = ⌈
𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠_𝑝𝑒𝑟_𝑛𝑜𝑑𝑒
⌉

• can you handle the expected traffic, and because you have four nodes, you can 

handle the loss of a node? 



6

https://ataghinezhad.github.io/

• Failure Situation: One node fails; remaining nodes overloaded, leading to service 

degradation (Figure 2-2).

• requests_per_node = 1,000 req/sec / 3 nodes = 333 req/sec/node

• That’s 333 req/sec per node, which is well above your 300 req/sec node limit (see 

Figure 2-2).

• Solution: Add a 5th node to ensure capacity even after one failure (Figure 2-3).



7

https://ataghinezhad.github.io/

• Upgrade Plan: Rolling deploy with 5 nodes ensures availability 

during upgrades.

• Risk: A node failure during an upgrade leaves only 3 nodes 

handling traffic, leading to an outage.

• Lesson: Ensure redundancy covers both routine maintenance 

and unexpected failures.



8

https://ataghinezhad.github.io/

• Suppose that you have a service whose average traffic is 1,000 

req/sec.

• let’s assume that a single node in your service can handle 300 

req/sec. 

• Four node is enough to handle expected traffic

• You want to do a software upgrade while running your service nodes.

• A rolling deploy (upgrade nodes one by one to keep operational 

reset when one is upgrading). 

• How many nodes is needed?

• Five Nodes

• This system can tolerate single node failure and support rolling 

deploy updates

• Six Nodes, can handle multimode failure



9

https://ataghinezhad.github.io/

• Setup: Service requires to handle 10,000 req/sec,

• It would need 34 nodes without considering redundancy for 

failures. 

• let’s uses 40 nodes across four data centers so that we have 

even more redundancy and fault tolorance.

• Are we resilient?



10

https://ataghinezhad.github.io/

• Risk: One data center outage leads to overloading the remaining 

nodes (Figure 2-5).

• How many servers we need to handle lose of a datacenter?

• 𝑛𝑜𝑑𝑒𝑠_𝑝𝑒𝑟_𝑑𝑎𝑡𝑎_𝑐𝑒𝑛𝑡𝑒𝑟 = ⌈min _𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑒𝑟𝑣𝑒𝑟𝑠 /(𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑑𝑎𝑡𝑎_𝑐𝑒𝑛𝑡𝑒𝑟𝑠 − 1)⌉

• Solution: To maintain capacity with a data center outage, 48 nodes 

are needed.

• 𝑛𝑜𝑑𝑒𝑠_𝑝𝑒𝑟_𝑑𝑎𝑡𝑎_𝑐𝑒𝑛𝑡𝑒𝑟 =
34

4 − 1
=12 server/data_center

• How many nodes will it be?

• total_nodes = nodes_per_data_center× 4 = 48 nodes



11

https://ataghinezhad.github.io/

• Sometimes seemingly independent problem scenarios 

can actually be dependent, meaning they might fail 

together

• Example: Your service needs four nodes, but you’ve 

wisely prepared with six nodes—enough to handle a 

single node failure and an upgrade in progress. 

• Six nodes sharing the same rack and power supply 

all fail simultaneously.

• Key Point: Ensure physical and infrastructure-level 

separation to prevent cascading failures.



12

https://ataghinezhad.github.io/

• A failure loop occurs when a problem prevents you from 

fixing it without causing a worse issue

• Example: Imagine having a backup generator stored 

in your garage, but the only way to access the garage 

is through an electric-powered door that doesn’t work 

during a power outage. Similarly, in the world of 

services, dependencies between failures and solutions 

can impact availability. 

• Lesson: Ensure that backup systems can be activated 

even during failures, avoiding failure loops.



13

https://ataghinezhad.github.io/

• Key Principles to manage your applications:

• “Fly Two Mistakes High”

• Look beyond surface failure modes.

• Consider dependent failure layers.

• Ensure recovery mechanisms work during failures.

• Don’t Ignore Problems

• Persistent issues affect availability plans.

• Backup systems matter—treat them seriously.

• Production Is Production

• Everything in production matters.

• Backup databases are mission-critical too.

• Layered Failures Are Tricky

• Identifying dependencies isn’t obvious.

• Invest time in understanding and resolving.



14

https://ataghinezhad.github.io/

▪ The Space Shuttle software system was one of the first 

large-scale applications to implement extreme 

redundancy and failure management.

• Primary system: 5 computers (4 identical running 

the same software, 1 independent).

• Main process on all computes during critical parts:

•4 computers received the same data and performed 

the same calculations.

•If one computer differed, it was voted out and 

shut down as it was uncorrect.(winners rule, loses 

terminate)

•The shuttle could operate with 3 computers and 

land safely with 2.



15

https://ataghinezhad.github.io/

▪ what would happen if the four computers couldn’t 

agree? This could happen if there were multiple 

failures and multiple computers had been shut down.
▪ Solution:

• System Setup: 5-computer redundancy system on the Space 

Shuttle.

o 4 main computers with identical software that vote on 

outputs.

o 1 independent computer with simpler software to 

resolve disputes.

• Outcome: 30 years of successful missions with no life-

threatening software failures.



16

https://ataghinezhad.github.io/

• System Setup: 5-computer redundancy system on the 

Space Shuttle.

o 4 main computers with identical software that vote 

on outputs.

o 1 independent computer with simpler software to 

resolve disputes.

• Outcome: 30 years of successful missions with no 

life-threatening software failures.



17

https://ataghinezhad.github.io/

▪ End of Chapter 2


