
1

https://ataghinezhad.github.io/

Mail:

a0taghinezhad@gmail.com

By Dr. Taghinezhad

mailto:a0taghinezhad@gmail.com

2

https://ataghinezhad.github.io/

About This Course

14 1

Presentations HomeworkLiterature Review

14

GradingExam

20

3

https://ataghinezhad.github.io/

References

4

https://ataghinezhad.github.io/

Projects include:

Each student must review at least three papers and write a
literature review on these subjects. The subjects are as follows,
but not limited to them:

1.Map-reduce- High Performance Distributed Computing
(HPDC), System Reliability

2. Parallel processing, distributed computing systems, and
computer networks

3. Cloud Computing, Fog Computing, Compute Continuum,
Edge Intelligence

5

https://ataghinezhad.github.io/

▪ Availability: Maintaining Availability in Modern

Applications

7

https://ataghinezhad.github.io/

• In today's digital world, customers expect to be connected.

They rely on services to be available, anytime, anywhere.

• Downtime is no longer acceptable. It leads to:

• * Frustration: Customers abandon services that are

unreliable.

• * Loss of Revenue: Businesses lose money when their

applications are unavailable.

• * Reputation Damage: A single outage can tarnish a

company's image.

8

https://ataghinezhad.github.io/

Ex

• It's Sunday, the day of the big game. You've invited 20

friends over to watch it on your new 300-inch Ultra Max

TV. But just as the game is about to start, the lights go

out and the TV goes dark.

▪ Disappointed, you call the local power company, and

the representative says they guarantee only 95%

availability of their power grid.

▪ This is important because customers expect services

to work all the time, and anything less than 100%

availability can be catastrophic to your business.

9

https://ataghinezhad.github.io/

▪ System availability is not just a technical detail;

• it's a fundamental business imperative for large-

scale systems.

▪ Fundamental Questions for All Companies:

• * Why Buy From You? (Highlight the direct

connection between availability and customer

acquisition)

• * What Do Your Customers Think? (Emphasize the

impact of downtime on customer satisfaction and brand

perception)

• * How Do You Make Customers Happy? (Connect

availability to business goals, revenue, and customer

retention)

10

https://ataghinezhad.github.io/

Defining Availability and Reliability

• Reliability:

• The ability of a system to perform its intended operations

correctly and consistently without errors.

• Example: Software that always returns the correct answer to 2 + 3.

• Availability:

• The ability of a system to be operational and responsive when needed.

• Example: A system that consistently returns an answer, even if the

answer is sometimes incorrect.

• A system can't be available if it's not reliable. (A system constantly returning

wrong answers isn't useful).

• A system can't be reliable if it's not available. (A system that crashes

frequently can't be relied upon).

• Focus: This course will emphasize building highly available systems,

assuming your systems are reliable.

11

https://ataghinezhad.github.io/

Reliability: Testing and Quality;

Availability: Architecting for Resilience

• Reliability is often ensured through thorough testing.

• Test Suites: We use test suites to catch software bugs

and ensure that the system produces the correct

output.

• Example: A test suite for adding numbers would verify

that 2 + 3 consistently results in 5.

• Availability is more challenging to achieve than reliability.

• Network Issues: Even a reliable application can

become unavailable due to network problems.

• This Course Focus: We'll explore strategies to ensure

your systems remain available despite network issues,

hardware failures, and other challenges.

12

https://ataghinezhad.github.io/

▪ As applications grow in popularity and usage, they may experience poor availability

due to several factors:

• 1. Resource Exhaustion: Increased users or data can overwhelm system

resources, leading to slow or unresponsive applications.

• 2. Unplanned Load-Based Changes: Rapid growth may necessitate quick code

changes without adequate planning, increasing the risk of issues.

• 3. Increased Number of Moving Parts: More developers and features can lead

to complex interactions and potential conflicts within the application.

• 4. Outside Dependencies: Reliance on external services (e.g., SaaS, cloud)

makes applications vulnerable to availability issues from those resources.

• 5. Technical Debt: As applications evolve, the accumulation of unresolved

changes and bugs can increase complexity and the likelihood of problems.

These challenges can manifest gradually or suddenly, ultimately costing money,

customer trust, and loyalty.

13

https://ataghinezhad.github.io/

▪ Measuring availability is crucial for maintaining a highly

available system.

• By tracking availability, we can gain insights into our

application's current performance and observe how it

evolves over time.

▪ The most common method for assessing the availability of

a system/application is to calculate the percentage of time it

remains accessible to users.

• This can be expressed using the following formula for a

given period:

• system availability

=
𝐓𝐨𝐭𝐚𝐥 𝐒𝐞𝐜𝐨𝐧𝐝𝐬 𝐢𝐧 𝐏𝐞𝐫𝐢𝐨𝐝 − 𝐒𝐞𝐜𝐨𝐧𝐝𝐬 𝐒𝐲𝐬𝐭𝐞𝐦 𝐢𝐬 𝐃𝐨𝐰𝐧

𝐓𝐨𝐭𝐚𝐥 𝐒𝐞𝐜𝐨𝐧𝐝𝐬 𝐢𝐧 𝐏𝐞𝐫𝐢𝐨𝐝

14

https://ataghinezhad.github.io/

▪ Let’s consider a practical example. Suppose your website experienced two

outages during April. The first outage lasted 37 minutes, and the second lasted

15 minutes. How much is the availability in Month?

▪ 1. Calculate Total Downtime:

• - Total downtime = (37 minutes + 15 minutes) × 60 seconds/minute =

3,120 seconds

▪ 2. Calculate Total Seconds in the Month:

• - Total seconds in April = 30 days × 86,400 seconds/day = 2,592,000

seconds

▪ 3. Calculate Site Availability Percentage:

• - Using our formula:

• Site Availability Percentage = 2,592,000s - 3,120s / 2,592,000s

• - Site Availability Percentage = ≈ 99.8795%

▪ Even a small amount of downtime can significantly impact your overall

availability percentage.

▪ Regularly measuring and analyzing availability is essential for ensuring that your

application meets user expectations and remains reliable over time.

15

https://ataghinezhad.github.io/

▪ Availability is often expressed in terms of "the nines," which is a shorthand

way to communicate high availability percentages.

▪ The number of nines indicates the level of reliability a system can achieve.

Below is a summary of the availability levels, their corresponding

percentages, and the allowable downtime in a typical month.

▪ ▎Table 1-1: The Nines

▪ | Nines | Percentage | Monthly Downtime |

▪ |————|————|——————–|

▪ | 2 nines | 99% | 432 minutes |

▪ | 3 nines | 99.9% | 43 minutes |

▪ | 4 nines | 99.99% | 4 minutes |

▪ | 5 nines | 99.999% | 26 seconds |

▪ | 6 nines | 99.9999% | 2.6 seconds |

16

https://ataghinezhad.github.io/

▪ In your earlier example, your website achieved an

availability of approximately 99.8795%, which falls short of

the 3 nines (99.9%) standard.

• This means that while your site is relatively reliable, it

does not meet the expectations typically associated with

high-availability applications.

▪ For a website aiming for 5 nines of availability, the

requirement is extremely stringent: only 26 seconds of

monthly downtime.

• Achieving this level may necessitate advanced

redundancy, failover mechanisms, and robust monitoring

systems.

17

https://ataghinezhad.github.io/

▪Determining what constitutes a reasonable availability

number depends on various factors:

•1. System Type: Critical applications (e.g., financial

services) may require higher availability compared to less

critical sites (e.g., personal blogs).

•2. Customer Expectations: Understand what your users

expect in terms of uptime and reliability.

•3. Business Needs: Consider the impact of downtime on

your revenue and brand reputation.

•4. Industry Standards: Research what competitors or

similar businesses are achieving.

18

https://ataghinezhad.github.io/

▪Common Thresholds

•- For many basic web applications, 3 nines

(99.9%) is often considered acceptable, allowing

for about 43 minutes of downtime each month.

•- More critical applications may aim for 4 nines

(99.99%), while mission-critical systems might

target 5 nines (99.999%) or even higher.

19

https://ataghinezhad.github.io/

▪ Planned outages, while necessary for maintenance

and updates, directly affect the overall availability of

an application.

• Many organizations mistakenly believe that

regular maintenance windows do not count

against their availability metrics. However, as

illustrated in your example, they certainly do.

20

https://ataghinezhad.github.io/

Ex

▪ Here’s a comment that I often overhear: “Our application never fails.

That’s because we regularly perform system maintenance. We keep

our availability high by scheduling weekly two-hour maintenance

windows and performing maintenance during these windows.”

▪ Let’s break down the example provided:

• 1. Total Hours in a Week:

▪ - 7 days× 24 hours = 168 hours

• 2. Hours Unavailable Each Week:

▪ - 2 hours (for planned maintenance)

• 3. Calculating Availability:

▪ - Availability Formula:

▪ Availability = Total Hours in Period - Hours System is Down/Total Hours in

Period

▪ - Plugging in Values:

▪ Availability = 168 hours - 2 hours/168 hours = 166/168≈ 0.9881 or

98.81%

▪ Without having a single failure of its application, the best this organization can achieve

is 98.8% availability. This falls short of even 2 nines availability (98.8% versus 99%).

21

https://ataghinezhad.github.io/

▪ - Negative User Experience: Regardless of whether

downtime is planned or unplanned if customers cannot

access the application when they need it, their experience

is negatively impacted.

▪ - Expectation Management: Customers expect high

availability, and any downtime—planned or not—can lead

to frustration, loss of trust, and potentially lost revenue.

22

https://ataghinezhad.github.io/

▪ 1. Schedule During Off-Peak Hours: If possible, schedule

maintenance during times when user activity is lowest to

minimize impact.

▪ 2. Communicate Clearly: Inform users well in advance

about scheduled maintenance windows and the expected

downtime.

▪ 3. Implement Redundancy: Use load balancing and

failover systems to allow for maintenance without affecting

availability.

▪ 4. Automate Maintenance Tasks: Where feasible,

automate maintenance tasks to reduce the duration of

downtime.

▪ 5. Monitor and Analyze: Continuously monitor application

performance and user feedback to adjust maintenance

practices as necessary.

23

https://ataghinezhad.github.io/

▪ Your application is operational and online.

• Systems are in place, your team is efficient, and

everything seems to be going well.

• Traffic is increasing, and your sales team is pleased.

▪ an unexpected outage occurs. Initially, it feels

manageable—after all, your availability has been

fantastic until now.

▪ But then it happens again. And again.

▪ As outages accumulate, concerns grow. Your CEO starts to

worry, customers ask questions, and your sales team

becomes anxious. What was once a stable system is now

facing instability, and the situation demands attention.

24

https://ataghinezhad.github.io/

▪ If availability starts to decline, it’s essential to take proactive steps to improve it

and maintain customer satisfaction. Here are some key actions you can take:

▪ - Measure and Track Current Availability: Understanding your current

availability is the first step. Regularly monitor and report your availability

percentage to identify trends.

▪ - Automate Manual Processes: Streamlining processes can reduce human

error and improve efficiency.

▪ - Automate Deployment Processes: This helps ensure consistency and speed

in your updates.

▪ - Maintain Configuration Management: Keep track of all configurations in a

management system for better oversight.

▪ - Enable Quick Changes with Rollback Capabilities: This allows for rapid

experimentation without significant risk.

▪ - Aim for Continuous Improvement: Regularly assess and enhance your

applications and systems.

▪ - Prioritize Availability as a Core Issue: Stay vigilant (observant) about

availability as your application evolves.

25

https://ataghinezhad.github.io/

▪ 1. Measure and Track Your Current Availability:

• - Establish a baseline by tracking when your application is available or down.

• - Calculate your availability percentage over time to gauge performance.

• - Monitor key events alongside availability data to identify correlations.

▪ 2. Utilize Service Tiers:

• - Implement service tiers to categorize services based on their criticality to

business operations.

• - This distinction helps prioritize resources effectively.

▪ 3. Create and Maintain a Risk Matrix:

• - A risk matrix provides visibility into technical debt and associated risks within

your application.

• - Regularly review risk management plans and implement mitigation strategies.

▪ By following these steps, you can better manage your application's availability and

avoid falling into a cycle of problems.

26

https://ataghinezhad.github.io/

27

https://ataghinezhad.github.io/

1. Continuous Integration (CI):

1. What it is: CI involves frequently integrating code changes into a

shared repository. Developers commit their code to this central

repository multiple times a day.

2. Why it matters: By doing this, teams catch integration issues

early. It ensures that everyone’s work is combined and tested

together, reducing the risk of conflicts and bugs during the later

stages.

3. Example: Imagine you’re working on a team building a web

application. Each developer writes their code and commits it to

the central repository. The CI system automatically triggers a build

process (compiling code, running tests, etc.) whenever a new

commit is made. If any tests fail, the team is notified immediately,

allowing them to fix issues promptly.

28

https://ataghinezhad.github.io/

1. Continuous Deployment (CD):

1. What it is: CD extends CI by automating the deployment process.

It ensures that code changes are automatically deployed to

production environments once they pass all tests.

2. Why it matters: CD reduces manual intervention, minimizes the

time between writing code and deploying it, and increases the

reliability of releases.

3. Example: Continuing with our web application scenario, after

successful CI, the CD pipeline takes over. It automatically deploys

the tested code to staging or production servers. Users get access

to new features or bug fixes without waiting for a manual

deployment process.

2. The CI/CD Pipeline:

1. The CI/CD pipeline is the set of automated steps that code goes

through from development to production.

29

https://ataghinezhad.github.io/

Ex

▪ ShopSmart has been enjoying high availability (99.9%) for several

years. However, recent traffic spikes during holiday sales have led to

unexpected outages, dropping availability to 98%. The CEO is

concerned, and the customer support team is overwhelmed with

complaints.

▪ Step-by-Step Implementation of Improvement Methods

▪ 1. Measure and Track Current Availability:

• - Action: Implement monitoring tools like New Relic or Datadog to track

uptime.

• - Example: Set up alerts for downtime and log incidents in a shared

dashboard. After a week, you find out that the platform has been down for

a total of 12 hours due to server overload during peak times.

• - Result: Calculate availability as follows:

• Availability = (Total Time - Downtime/Total Time) × 100

• For a week (168 hours):

• Availability = (168 - 12/168) × 100 = 92.86%

30

https://ataghinezhad.github.io/

Ex

▪ Utilize Service Tiers:

• - Action: Categorize services into tiers: critical

(checkout process), important (product catalog), and

non-critical (user reviews).

▪ - Example: Allocate more resources (like dedicated

servers) to the checkout process during high traffic times.

• - Result: During the next sale, the checkout process

remains functional even when the product catalog

experiences slowdowns.

31

https://ataghinezhad.github.io/

Ex

▪ 3. Create and Maintain a Risk Matrix:

• - Action: Develop a risk matrix to identify potential failure points, such as

server overload, database latency, or third-party service outages.

• - Example: Identify that the database is a single point of failure. The risk

matrix shows it has a high likelihood of causing downtime during peak

traffic.

• - Result: You implement a read-replica database solution to distribute

load and reduce risk.

▪ 4. Automate Manual Processes:

• - Action: Use CI/CD tools like Jenkins or GitHub Actions to automate

deployment processes.

• - Example: Before the holiday season, set up automated deployment for

minor updates to ensure quick rollouts without manual intervention.

• - Result: Updates are deployed smoothly with no downtime, improving

overall system reliability.

32

https://ataghinezhad.github.io/

Ex

▪ 5. Enable Quick Changes with Rollback Capabilities:

• - Action: Implement feature flags to allow quick rollbacks in

case of issues.

• - Example: During a major update, if users report issues with a

new payment method, you can quickly disable it without affecting

other functionalities.

• - Result: This minimizes customer impact and maintains user

trust.

▪ 6. Aim for Continuous Improvement:

• - Action: Schedule regular review meetings to assess

performance metrics and discuss potential improvements.

• - Example: After each major sale, analyze what worked and

what didn’t. Adjust your infrastructure accordingly.

• - Result: Continuous feedback leads to proactive measures,

such as increasing server capacity before anticipated traffic

spikes.

33

https://ataghinezhad.github.io/

Ex

▪ 7. Prioritize Availability as a Core Issue:

• - Action: Make availability a key performance indicator (KPI) for

all teams.

• - Example: Include uptime targets in team objectives and tie

some performance reviews to these metrics.

• - Result: All teams become more aware of their role in

maintaining availability, fostering a culture of accountability.

By systematically implementing these methods, ShopSmart not only

improved its availability from 98% back to 99.9% but also built a more

resilient system capable of handling future growth. Regular monitoring

and proactive measures ensured that outages became less frequent,

leading to increased customer satisfaction and trust.

34

https://ataghinezhad.github.io/

- Avoid Manual Operations in Production:

• - Performing manual changes in a production environment can lead to

unpredictable results—either improvements or compromises.

• Benefits of Using Repeatable Tasks:

▪ 1. Testing Before Implementation:

• - Allows you to test tasks before applying them, helping to avoid

mistakes that could lead to outages.

▪ 2. Task Customization:

• - You can tweak tasks to meet specific requirements, enabling

improvements before implementation.

▪ 3. Peer Review:

• - Having tasks reviewed by a third party increases the likelihood of

identifying potential side effects.

35

https://ataghinezhad.github.io/

▪ 4. Version Control:

• - Track changes to tasks: who made them, when, and

why. This enhances accountability and traceability.

▪ 5. Consistency Across Resources:

• - Apply the same change consistently across all affected

servers, improving overall system coherence.

▪ 6. Operational Consistency:

• - Avoid "one-off" changes that lead to server drift, making

diagnostics more challenging. Consistent changes create a

reliable operational baseline.

▪ 7. Auditable Tasks:

• - Repeatable tasks can be analyzed later for their impact,

whether positive or negative.

36

https://ataghinezhad.github.io/

▪ Security Considerations:

• - Many systems restrict access to production environments,

allowing only automated processes and procedures to

interact with them. This is a deliberate strategy to maintain

stability and security.

▪ If a task cannot be repeated reliably, it loses its utility.

Implementing repeatable tasks is crucial for maintaining

stability in your systems and applications.

37

https://ataghinezhad.github.io/

Ex

• - Scenario: A developer needs to add a new column to a production database

table.

• - Risk: If they manually execute the SQL command without proper testing, it could

lead to downtime, data corruption, or unexpected application behavior

▪ Benefits of Using Repeatable Tasks:

▪ 1. Testing Before Implementation:

• - Approach: Create a migration script that adds the new column. This script is

first executed in a staging environment.

• - Benefit: Testing in staging ensures that the script works as intended without

affecting production. Any issues can be identified and resolved beforehand.

▪ 2. Task Customization:

• - Approach: The migration script can be adjusted to include default values or

constraints based on specific application requirements.

• - Benefit: Customizing the task allows for improvements that align with business

needs before it’s applied to production.

▪ 3. Peer Review:

• - Approach: The migration script is submitted for review by another developer or

database administrator.

• - Benefit: Peer review increases the likelihood of catching potential issues, such

as performance impacts or unintended consequences of the schema change.

38

https://ataghinezhad.github.io/

Ex

▪ 4. Version Control:

• - Approach: Store the migration scripts in a version control system (e.g., Git).

• - Benefit: This allows tracking of who made changes, when they were made, and

the rationale behind them, enhancing accountability.

▪ 5. Consistency Across Resources:

• - Approach: Use a migration tool (e.g., Flyway or Liquibase) to apply the same

schema change across multiple database instances (e.g., dev, staging, production).

• - Benefit: Ensures that all environments are consistent, reducing the likelihood of

environment-specific issues.

▪ 6. Operational Consistency:

• - Approach: By using repeatable migration scripts rather than manual changes,

you avoid ad-hoc modifications.

• - Benefit: This creates a reliable operational baseline and prevents server drift,

making it easier to diagnose issues in the future.

▪ 7. Auditable Tasks:

• - Approach: Maintain a log of all executed migration scripts and their outcomes.

• - Benefit: This allows for later analysis of the impact of changes, whether positive

(e.g., improved performance) or negative (e.g., increased load times).

39

https://ataghinezhad.github.io/

▪ Consistency: Automating deployments ensures

that changes are applied uniformly across your

system. This means you can confidently apply

similar changes later with predictable results.

▪ - Reliable Rollbacks: Automated deployment

systems enhance the reliability of rolling back to

known good states, minimizing downtime and risk

40

https://ataghinezhad.github.io/

▪ Automated Changes: Instead of manually tweaking

configuration variables, implement a process to automate

these changes. At a minimum, create a script for the

change and check it into your software change

management system.

▪ -Uniformity Across Servers: This approach allows for

consistent application of changes across all servers in

your system. When adding or replacing servers, having a

known configuration improves safety and minimizes

impact

41

https://ataghinezhad.github.io/

▪ Modern Best Practices: Embrace Infrastructure as Code by describing

your infrastructure in a machine-readable format.

• Use tools like Puppet or Chef to automate the creation and

updating of your infrastructure based on this specification.

▪ - Version Control: Store your infrastructure specifications in a version

control system. This allows you to track changes just like you would with

code, ensuring accountability and traceability.

▪ - Change Management: Any infrastructure or configuration change

must go through the specification:

• 1. Ensure consistent, stable configurations across all components.

• 2. Track all changes for rollback capabilities and correlation with

system events.

• 3. Implement a peer review process for infrastructure changes,

akin to code reviews.

• 4. Create duplicate environments for testing, staging, and

development, mirroring production.

42

https://ataghinezhad.github.io/

▪ - All Components: This process applies not only to servers but also to

cloud components, (virtual network) VPCs, load balancers, routers,

and monitoring systems.

▪ - No Exceptions: For IaC to be effective, it must be consistently applied

to all system changes. Bypassing the management system is never

acceptable.

Real-World Example

▪ - Operational Pitfalls (unforeseen): Consider a scenario where an

operational update states, “We had a problem with one of our servers

last night. I tweaked the kernel variable and increased the maximum

number of open files.”

▪ - This fix may work temporarily but can lead to inconsistencies across

servers and undocumented changes that cause future issues.

43

https://ataghinezhad.github.io/

▪ Building a scalable application with high availability is

challenging. Issues can arise unexpectedly, causing

disruptions for users. Here are five key focuses to ensure

your application remains available:

44

https://ataghinezhad.github.io/

▪ 1. Build with Failure in Mind

• - Anticipate Failures: As Werner Vogels, CTO of Amazon, states,

“Everything fails all the time.”

• 1) Design Considerations:

▪ - Error Handling: Implement error-catching mechanisms.

▪ - Example:

• Use retry logic to attempt to reconnect to a failed service before

giving up.

• 2) Dependencies:

• Circuit breaker patterns are particularly useful for handling

dependency failures because they can reduce the impact a

dependency failure has on your system. Without a circuit

breaker, you can decrease the performance of your

application because of a dependency failure

• 3) Customers: What do you do when a component that is a

customer of your system behaves poorly

45

https://ataghinezhad.github.io/

▪ 2) Always Think About Scaling

• Prepare for Growth: Design your system to handle

increased loads without performance degradation.

▪ New server must be added to your system easly.

▪ - Example: Use load balancers to distribute traffic

evenly across servers.

• Reload only dynamic parts and use (CDN) and browser

from static parts. Don’t load the entire website from

sever every time.

46

https://ataghinezhad.github.io/

▪ 3) Mitigate Risk

• - Identify Vulnerabilities: Assess components that could

fail and develop strategies to minimize their impact.

• - Example: Utilize redundancy for critical services (e.g.,

multiple database replicas).

▪ Imagine you are selling product in website, and your

search system is totally different system, if it fails, all

your system fails. How would you respond to that.

• One way is to show your most popular product

and also response to be sorry for the search

problem.

47

https://ataghinezhad.github.io/

▪ 4) Monitor Availability:You can’t know if there is a problem in your

application unless you can see a problem

• Server monitoring To monitor the health of your servers and make sure

they keep operating efficiently.

• Configuration change monitoring: To monitor your system

configuration and identify if and when changes to your infrastructure

impact your application.

• Application performance monitoring: To look inside your application

and services to make sure they are operating as expected.

• Synthetic testing: To examine in real time how your application is

functioning from the perspective of your users, in order to catch problems

customers might see before they actually see them.

• Alerting: To inform appropriate personnel when a problem occurs so that

it can be quickly and efficiently resolved, minimizing the impact on your

customers.

48

https://ataghinezhad.github.io/

▪ 5) Respond to Availability Issues Predictably

• Unresponsive Services:

• When a service becomes unresponsive, several remedies

can be employed:

▪ Run diagnostic tests to identify the issue.

▪ Restart a known problematic daemon.

▪ Reboot the server if necessary.

• Standardized Failure Handling:

• Implement standard procedures to reduce system

downtime.

• These processes aid in identifying the root cause of

recurring issues.

• Service owners must be alerted first to address problems

• Related teams should also receive alerts to prepare for

potential impact on their dependent services.

49

https://ataghinezhad.github.io/

▪ Real-World Example: Icon Failure

• A past project experienced a major outage due to a

third-party icon generation system failure. The

application assumed this dependency would always

function. When it failed, the entire application went

down.

▪ Lessons Learned:

• - Anticipate Dependency Failures: Implement logic to

handle such failures gracefully.

• - Error Recovery: Detect the failure and either remove

the icon or catch the error, allowing the rest of the

application to function normally.

50

https://ataghinezhad.github.io/

