
Database1.1Dr. A. Taghinezhad

اصول طراحی پایگاه داده

Mail:

a0taghinezhad@gmail.com

By Dr. Taghinezhad

mailto:a0taghinezhad@gmail.com

Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 4 : Intermediate SQL

http://www.db-book.com/

Database1.3Dr. A. Taghinezhad

Outline

▪ Join Expressions

▪ Views

▪ Transactions

▪ Integrity Constraints

▪ SQL Data Types and Schemas

▪ Index Definition in SQL

▪ Authorization

Database1.4Dr. A. Taghinezhad

Joined Relations

▪ Join operations take two relations and return as a result

another relation.

▪ A join operation is a Cartesian product which requires that

tuples in the two relations match (under some condition). It

also specifies the attributes that are present in the result of the

join

▪ The join operations are typically used as subquery

expressions in the from clause

▪ Three types of joins:

• Natural join

• Inner join

• Outer join

Database1.5Dr. A. Taghinezhad

Natural Join in SQL

▪ Natural join matches tuples with the same values for all

common attributes, and retains only one copy of each common

column.

▪ List the names of instructors along with the course ID of the

courses that they taught

• select name, course_id

from students, takes

where student.ID = takes.ID;

▪ Same query in SQL with “natural join” construct

• select name, course_id

from student natural join takes;

Database1.6Dr. A. Taghinezhad

Natural Join in SQL (Cont.)

▪ The from clause can have multiple relations

combined using natural join:

select A1, A2, … An

from r1 natural join r2 natural join .. natural

join rn

where P ;

Database1.7Dr. A. Taghinezhad

Student and Takes Relation Relation

Database1.8Dr. A. Taghinezhad

student natural join takes

Database1.9Dr. A. Taghinezhad

Dangerous in Natural Join

▪ Beware of unrelated attributes with same name which get equated

incorrectly

▪ Example -- List the names of students instructors along with the

titles of courses that they have taken

• Correct version

select name, title

from student natural join takes, course

where takes.course_id = course.course_id;

• Incorrect version

select name, title

from student natural join takes natural join course;

▪ This query omits all (student name, course title) pairs where

the student takes a course in a department other than the

student's own department.

▪ The correct version (above), correctly outputs such pairs.

Database1.10Dr. A. Taghinezhad

Schema Diagram for University Database

Database1.11Dr. A. Taghinezhad

Natural Join with Using Clause

▪ To avoid the danger of equating attributes erroneously, we can

use the “using” construct that allows us to specify exactly which

columns should be equated.

▪ Query example

select name, title

from (student natural join takes) join course using

(course_id)

Database1.12Dr. A. Taghinezhad

Join Condition

▪ The on condition allows a general predicate over the

relations being joined

▪ This predicate is written like a where clause predicate except

for the use of the keyword on

▪ Query example

select *

from student join takes on student_ID = takes_ID

• The on condition above specifies that a tuple from student

matches a tuple from takes if their ID values are equal.

▪ Equivalent to:

select *

from student , takes

where student_ID = takes_ID

Database1.13Dr. A. Taghinezhad

Outer Join

▪ An extension of the join operation that avoids loss

of information.

▪ Computes the join and then adds tuples form one

relation that does not match tuples in the other

relation to the result of the join.

▪ Uses null values.

▪ Three forms of outer join:

• left outer join

• right outer join

• full outer join

Database1.14Dr. A. Taghinezhad

Outer Join Examples

▪ Relation course

▪ Relation prereq

▪ Observe that

course information is missing CS-347

prereq information is missing CS-315

Database1.15Dr. A. Taghinezhad

Left Outer Join

▪ course natural left outer join prereq

▪ In relational algebra: course ⟕ prereq

Database1.16Dr. A. Taghinezhad

Right Outer Join

▪ course natural right outer join prereq

▪ In relational algebra: course ⟖ prereq

Database1.17Dr. A. Taghinezhad

Full Outer Join

▪ course natural full outer join prereq

▪ In relational algebra: course ⟗ prereq

Database1.18Dr. A. Taghinezhad

Joined Types and Conditions

▪ Join operations take two relations and return as a

result another relation.

▪ These additional operations are typically used as

subquery expressions in the from clause

▪ Join condition – defines which tuples in the two

relations match.

▪ Join type – defines how tuples in each relation that do

not match any tuple in the other relation (based on the

join condition) are treated.

Database1.19Dr. A. Taghinezhad

Joined Relations – Examples

▪ course natural right outer join prereq

▪ course full outer join prereq using (course_id)

Database1.20Dr. A. Taghinezhad

Joined Relations – Examples

▪ course inner join prereq on

course.course_id = prereq.course_id

▪ What is the difference between the above, and a natural join?

▪ course left outer join prereq on

course.course_id = prereq.course_id

Database1.21Dr. A. Taghinezhad

Joined Relations – Examples

▪ course natural right outer join prereq

▪ course full outer join prereq using (course_id)

Database1.22Dr. A. Taghinezhad

Views

▪ In some cases, it is not desirable for all users to see the entire logical

model (that is, all the actual relations stored in the database.)

▪ Consider a person who needs to know an instructors name and

department, but not the salary. This person should see a relation

described, in SQL, by

select ID, name, dept_name

from instructor

▪ A view provides a mechanism to hide certain data from the view of

certain users.

▪ Any relation that is not of the conceptual model but is made visible to a

user as a “virtual relation” is called a view.

Database1.23Dr. A. Taghinezhad

View Definition

▪ A view is defined using the create view statement which has the form

create view v as < query expression >

where <query expression> is any legal SQL expression. The view name

is represented by v.

▪ Once a view is defined, the view name can be used to refer to the virtual

relation that the view generates.

▪ View definition is not the same as creating a new relation by evaluating

the query expression

• Rather, a view definition causes the saving of an expression; the

expression is substituted into queries using the view.

Database1.24Dr. A. Taghinezhad

View Definition and Use

▪ A view of instructors without their salary

create view faculty as

select ID, name, dept_name

from instructor

▪ Find all instructors in the Biology department

select name

from faculty

where dept_name = 'Biology'

▪ Create a view of department salary totals

create view departments_total_salary(dept_name, total_salary) as

select dept_name, sum (salary)

from instructor

group by dept_name;

Database1.25Dr. A. Taghinezhad

Views Defined Using Other Views

▪ One view may be used in the expression defining another

view

▪ A view relation v1 is said to depend directly on a view

relation v2 if v2 is used in the expression defining v1

▪ A view relation v1 is said to depend on view relation v2 if

either v1 depends directly to v2 or there is a path of

dependencies from v1 to v2

▪ A view relation v is said to be recursive if it depends on

itself.

Database1.26Dr. A. Taghinezhad

Views Defined Using Other Views

▪ create view physics_fall_2017 as

select course.course_id, sec_id, building,

room_number

from course, section

where course.course_id = section.course_id

and course.dept_name = 'Physics'

and section.semester = 'Fall'

and section.year = '2017’;

▪ create view physics_fall_2017_watson as

select course_id, room_number

from physics_fall_2017

where building= 'Watson';

Database1.27Dr. A. Taghinezhad

View Expansion

▪ Expand the view :

create view physics_fall_2017_watson as

select course_id, room_number

from physics_fall_2017

where building= 'Watson'

▪ To:

create view physics_fall_2017_watson as

select course_id, room_number

from (select course.course_id, building, room_number

from course, section

where course.course_id = section.course_id

and course.dept_name = 'Physics'

and section.semester = 'Fall'

and section.year = '2017')

where building= 'Watson';

Database1.28Dr. A. Taghinezhad

View Expansion (Cont.)

▪ A way to define the meaning of views defined in terms of

other views.

▪ Let view v1 be defined by an expression e1 that may itself

contain uses of view relations.

▪ View expansion of an expression repeats the following

replacement step:

repeat

Find any view relation vi in e1

Replace the view relation vi by the expression

defining vi

until no more view relations are present in e1

▪ As long as the view definitions are not recursive, this loop

will terminate

Database1.29Dr. A. Taghinezhad

View Expansion (Cont.)

▪ Example: View Definitions:

• CREATE VIEW v1 AS SELECT a, b FROM t1;

• CREATE VIEW v2 AS SELECT v1.a, t2.c FROM v1, t2 WHERE v1.b = t2.b;

▪ View Expansion Process:

• Identify: v1 is a view relation.

▪ Replace v1 with its definition:

• SELECT t1.a, t2.c FROM (SELECT a, b FROM t1) AS v1, t2 WHERE v1.b = t2.b;

▪ Final Expression:

• The expanded view expression no longer contains any view relations.

▪ Key Points:

• Non-recursive Definitions: The process works as long as the view definitions are

not recursive. Recursive definitions would create an infinite loop.

• Efficiency: This expansion helps understand and optimize queries, ensuring correct

and efficient execution.

▪ By using view expansion, you break down complex nested view definitions into their

fundamental components, making the overall query more transparent and manageable.

Any questions about view expansion or SQL in general?

Database1.30Dr. A. Taghinezhad

Materialized Views

▪ Certain database systems allow view relations

to be physically stored.

• Physical copy created when the view is

defined.

• Such views are called Materialized view:

▪ If relations used in the query are updated, the

materialized view result becomes out of date

• Need to maintain the view, by updating the

view whenever the underlying relations are

updated.

Database1.31Dr. A. Taghinezhad

Update of a View

▪ Add a new tuple to faculty view which we defined earlier

insert into faculty

values ('30765', 'Green', 'Music');

▪ This insertion must be represented by the insertion into the

instructor relation

• Must have a value for salary attribute in the table.

▪ Two approaches

• Reject the insert

• Insert the tuple

('30765', 'Green', 'Music', null)

into the instructor relation

Database1.32Dr. A. Taghinezhad

Some Updates Cannot be Translated Uniquely

▪ create view instructor_info as

select ID, name, building

from instructor, department

where instructor.dept_name = department.dept_name;

▪ insert into instructor_info

values ('69987', 'White', 'Taylor');

▪ Issues

• Which department, if multiple departments in Taylor?

• What if no department is in Taylor?

Database1.33Dr. A. Taghinezhad

And Some Not at All

▪ create view history_instructors as

select *

from instructor

where dept_name= 'History';

▪ What happens if we insert

('25566', 'Brown', 'Biology', 100000)

into history_instructors?

Database1.34Dr. A. Taghinezhad

View Updates in SQL

▪ Most SQL implementations allow updates only on simple

views

• The from clause has only one database relation.

• The select clause contains only attribute names of the

relation, and does not have any expressions, aggregates,

or distinct specification.

• Any attribute not listed in the select clause can be set to

null

• The query does not have a group by or having clause.

Database1.35Dr. A. Taghinezhad

Transactions

▪ A transaction consists of a sequence of query and/or update

statements and is a “unit” of work

▪ The SQL standard specifies that a transaction begins implicitly when

an SQL statement is executed.

▪ The transaction must end with one of the following statements:

• Commit work. The updates performed by the transaction become

permanent in the database.

• Rollback work. All the updates performed by the SQL statements

in the transaction are undone.

▪ Atomic transaction

• either fully executed or rolled back as if it never occurred

▪ Isolation from concurrent transactions

Database1.36Dr. A. Taghinezhad

Integrity Constraints

▪ Integrity constraints guard against accidental damage to the

database, by ensuring that authorized changes to the

database do not result in a loss of data consistency.

• A checking account must have a balance greater than

$10,000.00

• A salary of a bank employee must be at least $4.00 an

hour

• A customer must have a (non-null) phone number

Database1.37Dr. A. Taghinezhad

Constraints on a Single Relation

▪ not null

▪ primary key

▪ unique

▪ check (P), where P is a predicate

Database1.38Dr. A. Taghinezhad

Not Null Constraints

▪ not null

• Declare name and budget to be not

null

name varchar(20) not null

budget numeric(12,2) not null

Database1.39Dr. A. Taghinezhad

Unique Constraints

▪ unique (A1, A2, …, Am)

• The unique specification states that the

attributes A1, A2, …, Am form a candidate

key.

• Candidate keys are permitted to be null (in

contrast to primary keys).

Database1.40Dr. A. Taghinezhad

The check clause

▪ The check (P) clause specifies a predicate P that must be satisfied

by every tuple in a relation.

▪ Example: ensure that semester is one of fall, winter, spring or

summer

create table section

(course_id varchar (8),

sec_id varchar (8),

semester varchar (6),

year numeric (4,0),

building varchar (15),

room_number varchar (7),

time slot id varchar (4),

primary key (course_id, sec_id, semester, year),

check (semester in ('Fall', 'Winter', 'Spring', 'Summer')))

Database1.41Dr. A. Taghinezhad

Referential Integrity

▪ Ensures that a value that appears in one relation

for a given set of attributes also appears for a

certain set of attributes in another relation.

• Example: If “Biology” is a department name

appearing in one of the tuples in the instructor

relation, then there exists a tuple in the

department relation for “Biology”.

▪ Let A be a set of attributes. Let R and S be two

relations that contain attributes A and where A is

the primary key of S. A is said to be a foreign key

of R if for any values of A appearing in R these

values also appear in S.

Database1.42Dr. A. Taghinezhad

Referential Integrity (Cont.)

▪ Foreign keys can be specified as part of the SQL

create table statement

foreign key (dept_name) references department

▪ By default, a foreign key references the primary-key

attributes of the referenced table.

▪ SQL allows a list of attributes of the referenced

relation to be specified explicitly.

foreign key (dept_name) references department

(dept_name)

Database1.43Dr. A. Taghinezhad

Cascading Actions in Referential Integrity

▪ When a referential-integrity constraint is violated, the normal

procedure is to reject the action that caused the violation.

▪ An alternative, in case of delete or update is to cascade

create table course (

(…

dept_name varchar(20),

foreign key (dept_name) references department

on delete cascade

on update cascade,

. . .)

▪ Instead of cascade we can use :

• set null,

• set default

Database1.44Dr. A. Taghinezhad

Integrity Constraint Violation During Transactions

▪ Consider:

create table person (

ID char(10),

name char(40),

mother char(10),

father char(10),

primary key ID,

foreign key father references person,

foreign key mother references person)

▪ How to insert a tuple without causing constraint violation?

Insert father and mother of a person before inserting person

OR, set father and mother to null initially, update after inserting all

persons (not possible if father and mother attributes declared to be

not null)

OR defer constraint checking

Database1.45Dr. A. Taghinezhad

Complex Check Conditions

▪ The predicate in the check clause can be an arbitrary

predicate that can include a subquery.

check (time_slot_id in (select time_slot_id from

time_slot))

The check condition states that the time_slot_id in

each tuple in the section relation is actually the

identifier of a time slot in the time_slot relation.

• The condition has to be checked not

only when a tuple is inserted or

modified in section , but also when

the relation time_slot changes

Database1.46Dr. A. Taghinezhad

Assertions

▪ An assertion is a predicate expressing a condition that we wish the

database always to satisfy.

▪ The following constraints, can be expressed using assertions:

▪ For each tuple in the student relation, the value of the attribute tot_cred

must equal the sum of credits of courses that the student has

completed successfully.

▪ An instructor cannot teach in two different classrooms in a semester in

the same time slot

▪ An assertion in SQL takes the form:

create assertion <assertion-name> check (<predicate>);

Database1.47Dr. A. Taghinezhad

Built-in Data Types in SQL

▪ date: Dates, containing a (4 digit) year, month and date

• Example: date '2005-7-27'

▪ time: Time of day, in hours, minutes and seconds.

• Example: time '09:00:30' time '09:00:30.75'

▪ timestamp: date plus time of day

• Example: timestamp '2005-7-27 09:00:30.75'

▪ interval: period of time

• Example: interval '1' day

• Subtracting a date/time/timestamp value from another gives an

interval value

• Interval values can be added to date/time/timestamp values

Database1.48Dr. A. Taghinezhad

Large-Object Types

▪ Large objects (photos, videos, CAD files, etc.) are

stored as a large object:

• blob: binary large object -- object is a large

collection of uninterpreted binary data (whose

interpretation is left to an application outside of

the database system)

• clob: character large object -- object is a large

collection of character data

▪ When a query returns a large object, a pointer is

returned rather than the large object itself.

Database1.49Dr. A. Taghinezhad

User-Defined Types

▪ create type construct in SQL creates user-defined

type

create type Dollars as numeric (12,2) final

▪ Example:

create table department

(dept_name varchar (20),

building varchar (15),

budget Dollars);

Database1.50Dr. A. Taghinezhad

Domains

▪ create domain construct in SQL-92 creates

user-defined domain types

create domain person_name char(20) not

null

▪ Types and domains are similar. Domains can

have constraints, such as not null, specified on

them.

▪ Example:

create domain degree_level varchar(10)

constraint degree_level_test

check (value in ('Bachelors', 'Masters',

'Doctorate'));

Database1.51Dr. A. Taghinezhad

Index Creation

▪ Many queries reference only a small proportion of the records

in a table.

▪ It is inefficient for the system to read every record to find a

record with particular value

▪ An index on an attribute of a relation is a data structure that

allows the database system to find those tuples in the relation

that have a specified value for that attribute efficiently, without

scanning through all the tuples of the relation.

▪ We create an index with the create index command

create index <name> on <relation-name> (attribute);

Database1.52Dr. A. Taghinezhad

Index Creation Example

▪ create table student

(ID varchar (5),

name varchar (20) not null,

dept_name varchar (20),

tot_cred numeric (3,0) default 0,

primary key (ID))

▪ create index studentID_index on student(ID)

▪ The query:

select *

from student

where ID = '12345'

can be executed by using the index to find the required

record, without looking at all records of student

Database1.53Dr. A. Taghinezhad

Authorization

▪ We may assign a user several forms of authorizations

on parts of the database.

• Read - allows reading, but not modification of data.

• Insert - allows insertion of new data, but not

modification of existing data.

• Update - allows modification, but not deletion of

data.

• Delete - allows deletion of data.

▪ Each of these types of authorizations is called a

privilege. We may authorize the user all, none, or a

combination of these types of privileges on specified

parts of a database, such as a relation or a view.

Database1.54Dr. A. Taghinezhad

Authorization (Cont.)

▪ Forms of authorization to modify the database schema

• Index - allows creation and deletion of indices.

• Resources - allows creation of new relations.

• Alteration - allows addition or deletion of attributes in

a relation.

• Drop - allows deletion of relations.

Database1.55Dr. A. Taghinezhad

Authorization Specification in SQL

▪ The grant statement is used to give authorization

grant <privilege list> on <relation or view > to <user list>

▪ <user list> is:

• a user-id

• public, which allows all valid users the privilege granted

• A role (more on this later)

▪ Example:

• grant select on department to Akbar, Asghar

▪ Granting a privilege on a view does not imply granting any

privileges on the underlying relations.

▪ The grantor of the privilege must already hold the privilege on

the specified item (or be the database administrator).

Database1.56Dr. A. Taghinezhad

Privileges in SQL

▪ select: allows read access to relation, or the ability to

query using the view

• Example: grant users U1, U2, and U3 select

authorization on the instructor relation:

grant select on instructor to U1, U2, U3

▪ insert: the ability to insert tuples

▪ update: the ability to update using the SQL update

statement

▪ delete: the ability to delete tuples.

▪ all privileges: used as a short form for all the

allowable privileges

Database1.57Dr. A. Taghinezhad

Revoking Authorization in SQL

▪ The revoke statement is used to revoke authorization.

revoke <privilege list> on <relation or view> from <user list>

▪ Example:

revoke select on student from U1, U2, U3

▪ <privilege-list> may be all to revoke all privileges the revokee

may hold.

▪ If <revokee-list> includes public, all users lose the privilege

except those granted it explicitly.

▪ If the same privilege was granted twice to the same user by

different grantees, the user may retain the privilege after the

revocation.

▪ All privileges that depend on the privilege being revoked are

also revoked.

Database1.58Dr. A. Taghinezhad

Roles

▪ A role is a way to distinguish among various users

as far as what these users can access/update in the

database.

▪ To create a role we use:

create a role <name>

▪ Example:

• create role instructor

▪ Once a role is created we can assign “users” to the

role using:

• grant <role> to <users>

Database1.59Dr. A. Taghinezhad

Roles Example

▪ create role instructor;

▪ grant instructor to Amit;

▪ Privileges can be granted to roles:

• grant select on takes to instructor;

▪ Roles can be granted to users, as well as to other roles

• create role teaching_assistant

• grant teaching_assistant to instructor;

▪ Instructor inherits all privileges of teaching_assistant

▪ Chain of roles

• create role dean;

• grant instructor to dean;

• grant dean to Satoshi;

Database1.60Dr. A. Taghinezhad

Authorization on Views

▪ create view geo_instructor as

(select *

from instructor

where dept_name = 'Geology');

▪ grant select on geo_instructor to geo_staff

▪ Suppose that a geo_staff member issues

• select *

from geo_instructor;

▪ What if

• geo_staff does not have permissions on instructor?

• Creator of view did not have some permissions on

instructor?

Database1.61Dr. A. Taghinezhad

Other Authorization Features

▪ references privilege to create foreign key

• grant reference (dept_name) on department to Mariano;

• Why is this required?

▪ transfer of privileges

• grant select on department to Amit with grant option;

• revoke select on department from Amit, Satoshi

cascade;

• revoke select on department from Amit, Satoshi restrict;

• And more!

Database1.62Dr. A. Taghinezhad

End of Chapter 4

