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History

▪ IBM Sequel language developed as part of System R project at the 

IBM San Jose Research Laboratory

▪ Renamed Structured Query Language (SQL)

▪ ANSI and ISO standard SQL:

• SQL-86

• SQL-89

• SQL-92 

• SQL:1999 (language name became Y2K compliant!)

• SQL:2003

▪ Commercial systems offer most, if not all, SQL-92 features, plus 

varying feature sets from later standards and special proprietary 

features.  

• Not all examples here may work on your particular system.
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SQL Parts

▪ DML -- provides the ability to query information from the 

database and to insert tuples into, delete tuples from, and 

modify tuples in the database.

▪ integrity – the  DDL includes commands for specifying integrity 

constraints.

▪ View definition -- The DDL  includes commands for defining 

views.

▪ Transaction control –includes commands for specifying the 

beginning and ending of transactions.

▪ Embedded SQL  and dynamic SQL -- define how SQL 

statements can be embedded within general-purpose 

programming languages.

▪ Authorization – includes commands for specifying access 

rights to relations and views.
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Data Definition Language

▪ The schema for each relation.

▪ The type of values associated with each 

attribute.

▪ The Integrity constraints

▪ The set of indices to be maintained for each 

relation.

▪ Security and authorization information for 

each relation.

▪ The physical storage structure of each 

relation on disk.

The SQL data-definition language (DDL) allows the specification of 

information about relations, including:



Database1.7Dr. A. Taghinezhad

Domain Types in SQL

▪ char(n). Fixed length character string, with user-specified length n.

▪ varchar(n). Variable length character strings, with user-specified 
maximum length n.

▪ int. Integer (a finite subset of the integers that is machine-dependent).

▪ smallint. Small integer (a machine-dependent subset of the integer 
domain type).

▪ numeric(p,d). Fixed point number, with user-specified precision of p
digits, with d digits to the right of decimal point.  (ex., numeric(3,1), allows 
44.5 to be stores exactly, but not 444.5 or 0.32)

▪ real, double precision. Floating point and double-precision floating point 
numbers, with machine-dependent precision.

▪ float(n). Floating point number, with user-specified precision of at least n
digits.

▪ More are covered in Chapter 4.
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Create Table Construct

▪ An SQL relation is defined using the create table command:

create table r 

(A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),

...,

(integrity-constraintk))

• r is the name of the relation

• each Ai is an attribute name in the schema of relation r

• Di is the data type of values in the domain of attribute Ai

▪ Example: How to create the Instructor Database?

create table instructor (

ID char(5),

name           varchar(20),

dept_name varchar(20),

salary numeric(8,2))
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Integrity Constraints in Create Table

▪ Types of integrity constraints

• primary key (A1, ..., An )

• foreign key (Am, ..., An ) references r

• not null

▪ SQL prevents any update to the database that violates an integrity 

constraint.

▪ Example:

create table instructor (

ID char(5),

name           varchar(20) not null,

dept_name varchar(20),

salary numeric(8,2),

primary key (ID),

foreign key (dept_name) references department);
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And a Few More Relation Definitions

▪ create table student (
ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),
primary key (ID),
foreign key (dept_name) references department);

▪ create table takes (
ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2), 
primary key (ID, course_id, sec_id, semester, year) ,
foreign key (ID) references student,

foreign key (course_id, sec_id, semester, year) references 
section);
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And more still

▪ create table course (

course_id varchar(8),

title varchar(50),

dept_name varchar(20),

credits numeric(2,0),

primary key (course_id),
foreign key (dept_name) references department);
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Updates to tables

▪ Insert 

• insert into instructor values ('10211', 'Smith', 'Biology', 66000);

▪ Delete

• Remove all tuples from the student relation

▪ delete from student  

▪ Drop Table

• drop table r

▪ Alter

• alter table r add A D

▪ where A is the name of the attribute to be added to relation r and 
D is the domain of A.

▪ All exiting tuples in the relation are assigned null as the value for 
the new attribute.  

• alter table r drop A     

▪ where A is the name of an attribute of relation r

▪ Dropping of attributes not supported by many databases.
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Basic Query Structure 

▪ A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

• Ai represents an attribute

• Ri represents a relation

• P is a predicate.

▪ The result of an SQL query is a relation.
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The select Clause

▪ The select clause lists the attributes desired in the result of 

a query

• corresponds to the projection operation of the relational 

algebra

▪ Example: find the names of all instructors:

select name

from instructor

▪ NOTE:  SQL names are case insensitive (i.e., you may use 

upper- or lower-case letters.)  

• E.g.,  Name ≡ NAME ≡ name

• Some people use upper case wherever we use bold font.
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The select Clause (Cont.)

▪ SQL allows duplicates in relations as well as in 

query results.

▪ To force the elimination of duplicates, insert the 

keyword distinct after select.

▪ Find the department names of all instructors, and 

remove duplicates

select distinct dept_name
from instructor

▪ The keyword all specifies that duplicates should 

not be removed.

select all dept_name
from instructor
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The select Clause (Cont.)

▪ An asterisk (*) in the select clause denotes “all attributes”

select *

from instructor

▪ An attribute can be a literal  with  no from  clause

select  '437'

• Results is a table with one column and a single row with value “437”

• Can give the column a name using:

select '437' as FOO

▪ An attribute can be a literal with from  clause

select  'A'

from instructor

• Result is a table with one column and N rows (number of tuples in 

the instructors table), each row with value “A”
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The select Clause (Cont.)

▪ The select clause can contain arithmetic expressions 

involving the operation, +, –, , and /, and operating on 

constants or attributes of tuples.

• What would be the result of a query that returns a 

relation identical to the instructor relation, except 

with the value of the attribute "salary" divided by 

12?
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The select Clause (Cont.)

• The query: 

select ID, name, salary/12
from instructor

would return a relation that is the same as the instructor 
relation, except that the value of the attribute salary is 

divided by 12.

• Can rename “salary/12” using the as clause:

select ID, name, salary/12  as monthly_salary
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The where Clause

▪ The where clause specifies conditions that the result must satisfy

• Corresponds to the selection predicate of the relational algebra.  

▪ To find all instructors in Comp. Sci. dept

select name
from instructor
where dept_name = 'Comp. Sci.'

▪ SQL allows the use of the logical connectives and, or, and not 

▪ The operands of the logical connectives can be expressions involving the 

comparison operators <, <=, >, >=, =, and <>.

▪ Comparisons can be applied to results of arithmetic expressions

▪ To find all instructors in Comp. Sci. dept with salary > 70000

select name
from instructor
where dept_name = 'Comp. Sci.' and salary > 70000
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The from Clause

▪ The from clause lists the relations involved in the query

• Corresponds to the Cartesian product operation of the 

relational algebra.

▪ Find the Cartesian product instructor X teaches

select 

from instructor, teaches

• generates every possible instructor – teaches pair, with all 

attributes from both relations.

• For common attributes (e.g., ID), the attributes  in the 

resulting table are renamed using the  relation name (e.g., 

instructor.ID)

▪ Cartesian product not very useful directly, but useful 

combined with where-clause condition (selection operation in 

relational algebra).
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Examples

▪ Find the names of all instructors who have taught 

some course and the course_id

• select name, course_id
from instructor , teaches
where instructor.ID = teaches.ID 

▪ Find the names of all instructors in the Art  

department who have taught some course and the 

course_id

• select name, course_id
from instructor , teaches
where instructor.ID = teaches.ID  

and instructor. dept_name = 'Art'
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The Rename Operation

▪ The SQL allows renaming relations and attributes using the 

as clause:

old-name as new-name

▪ Find the names of all instructors who have a higher salary 

than 

some instructor in 'Comp. Sci'.

• select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = 'Comp. 
Sci.’

▪ Keyword as is optional and may be omitted

instructor as T ≡ instructor T



Database1.23Dr. A. Taghinezhad

Self Join Example

▪ Relation emp-super

▪ Find the supervisor of “Bob”

▪ Find the supervisor of the supervisor of “Bob”

▪ Can you find  ALL the supervisors (direct and 

indirect) of “Bob”?
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String Operations

▪ SQL includes a string-matching operator for comparisons on character 

strings.  The operator like uses patterns that are described using two 

special characters:

• percent ( % ).  The % character matches any substring.

• underscore ( _ ).  The _ character matches any character.

▪ Find the names of all instructors whose name includes the substring 

“dar”.

select name
from instructor
where name like '%dar%' 

▪ Match the string “100%”

like '100 \%' escape  '\' 

in that above we use backslash (\) as the escape character.
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String Operations (Cont.)

▪ Patterns are case sensitive. 

▪ Pattern matching examples:

• 'Intro%' matches any string beginning with “Intro”.

• '%Comp%' matches any string containing “Comp” as a 

substring.

• '_ _ _' matches any string of exactly three characters.

• '_ _ _ %' matches any string of at least three characters.

▪ SQL supports a variety of string operations such as

• concatenation (using “||”)

• converting from upper to lower case (and vice versa)

• finding string length, extracting substrings, etc.
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Ordering the Display of Tuples

▪ List in alphabetic order the names of all 

instructors 

select distinct name
from    instructor
order by name

▪ We may specify desc for descending order or 

asc for ascending order, for each attribute; 

ascending order is the default.

• Example:  order by name desc

▪ Can sort on multiple attributes

• Example: order by dept_name, name
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Where Clause Predicates

▪ SQL includes a between comparison operator

▪ Example:  Find the names of all instructors with salary 

between $90,000 and $100,000 (that is,  $90,000 and 

 $100,000)

• select name
from instructor
where salary between 90000 and 100000

▪ Tuple comparison

• select name, course_id
from instructor, teaches
where (instructor.ID, dept_name) = (teaches.ID, 

'Biology');
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Set Operations

▪ Find courses that ran in Fall 2017 or in Spring 2018

(select course_id from section where sem = 'Fall' and year = 2017)

union

(select course_id from section where sem = 'Spring' and year = 2018)

▪ Find courses that ran in Fall 2017 and in Spring 2018

(select course_id from section where sem = 'Fall' and year = 2017)

intersect

(select course_id from section where sem = 'Spring' and year = 2018)

▪ Find courses that ran in Fall 2017 but not in Spring 2018

(select course_id from section where sem = 'Fall' and year = 2017)

except

(select course_id from section where sem = 'Spring' and year = 2018)
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Set Operations (Cont.)

▪ Set operations union, intersect, and except 

• Each of the above operations automatically 

eliminates duplicates

▪ To retain all duplicates use the

• union all,

• intersect all

• except all.
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Null Values

▪ It is possible for tuples to have a null value, denoted by null, 

for some of their attributes

▪ null signifies an unknown value or that a value does not exist.

▪ The result of any arithmetic expression involving null is null

• Example:  5 + null returns null

▪ The predicate  is null can be used to check for null values.

• Example: Find all instructors whose salary is null.

select name
from instructor
where salary is null

▪ The predicate is not null succeeds if the value on which it is 

applied is not null.
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Null Values (Cont.)

▪ SQL treats as unknown the result of any comparison involving a null 

value (other than predicates is null and  is not null).

• Example: 5 < null or null <> null or null = null

▪ The predicate in a where clause can involve Boolean operations (and, 

or, not); thus the definitions of the Boolean operations need to be  

extended to deal with the value unknown.

• and : (true and unknown)  = unknown,    
(false and unknown) = false,
(unknown and unknown) = unknown

• or:    (unknown or true)   = true,

(unknown or false)  = unknown
(unknown or unknown) = unknown

▪ Result of where clause predicate is treated as false if it evaluates to 

unknown
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Aggregate Functions

▪ These functions operate on the multiset of 

values of a column of a relation, and 

return a value

avg: average value

min:  minimum value

max:  maximum value

sum:  sum of values

count:  number of values
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Aggregate Functions Examples

▪ Find the average salary of instructors in the Computer 

Science department 

• select avg (salary)

from instructor
where dept_name= 'Comp. Sci.';

▪ Find the total number of instructors who teach a course in 

the Spring 2018 semester

• select count (distinct ID)

from teaches
where semester = 'Spring' and year = 2018;

▪ Find the number of tuples in the course relation

• select count (*)

from course;
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Aggregate Functions – Group By

▪ Find the average salary of instructors in each department

• select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name;
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Aggregation (Cont.)

▪ Attributes in select clause outside of aggregate 

functions must appear in group by list

• /* erroneous query */

select dept_name, ID, avg (salary)

from instructor
group by dept_name;
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Example

را تهیه کرده اند؟P2مشخص کنید چند تهیه کننده ▪

QtyP#S#

300P1s1

200P2s2

400P3s3

300P1s2

400P2s2

200P2s3

S

P

SP

CitySnameS#

TehranFanavara

n

s1

TabrizIran 

Segment

s2

TabrizPooladins3

CityTypeColorP#

TehranIronRedP1

TabrizCopp

er

GreenP2

ShirazBras

s

BlueP3

TehranIronRedP4
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Example

را تهیه کرده اند؟P2مشخص کنید چند تهیه کننده ▪

▪Select count(*) from SP where p#=‘P2’

QtyP#S#

300P1s1

200P2s2

400P3s3

300P1s2

400P2s2

200P2s3

S P
SP

CitySnameS#

TehranFanavarans1

TabrizIran 

Segment

s2

TabrizPooladins3

CityTypeColorP#

TehranIronRedP1

TabrizCopperGreenP2

ShirazBrassBlueP3

TehranIronRedP4
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Example

کل مقدار تهیه شده از هر قطعه را در جدول جواب بدهد همراه با شماره ▪
قطعه

QtyP#S#

300P1s1

200P2s2

400P3s3

300P1s2

400P2s2

200P2s3

S P
SP

CitySnameS#

TehranFanavarans1

TabrizIran 

Segment

s2

TabrizPooladins3

CityTypeColorP#

TehranIronRedP1

TabrizCopperGreenP2

ShirazBrassBlueP3

TehranIronRedP4
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Example

کل مقدار تهیه شده از هر قطعه را در جدول جواب بدهد همراه با شماره قطعه▪

▪Select P#, SUM(Qty) from SP Group By P#

QtyP#S#

300P1s1

200P2s2

400P3s3

300P1s2

400P2s2

200P2s3

S P
SP

CitySnameS#

TehranFanavarans1

TabrizIran 

Segment

s2

TabrizPooladins3

CityTypeColorP#

TehranIronRedP1

TabrizCopperGreenP2

ShirazBrassBlueP3

TehranIronRedP4
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Example

رفتن برای هر قطعه تهیه شده، شماره قطعه، کل تعداد و ماکزیمم تعداد تهیه شده از آن را بدون در نظر گ▪
S1بدهد

QtyP#S#

300P1s1

200P2s2

400P3s3

300P1s2

400P2s2

200P2s3

S P
SP

CitySnameS#

TehranFanavarans1

TabrizIran 

Segment

s2

TabrizPooladins3

CityTypeColorP#

TehranIronRedP1

TabrizCopperGreenP2

ShirazBrassBlueP3

TehranIronRedP4



Database1.41Dr. A. Taghinezhad

Example

رفتن برای هر قطعه تهیه شده، شماره قطعه، کل تعداد و ماکزیمم تعداد تهیه شده از آن را بدون در نظر گ▪
S1بدهد

▪ Select P#, SUM(Qty),MAX(Qty)

▪ From SP

▪ Where S# !=‘S!’

▪ Group By P#

QtyP#S#

300P1s1

200P2s2

400P3s3

300P1s2

400P2s2

200P2s3

S P
SP

CitySnameS#

TehranFanavarans1

TabrizIran 

Segment

s2

TabrizPooladins3

CityTypeColorP#

TehranIronRedP1

TabrizCopperGreenP2

ShirazBrassBlueP3

TehranIronRedP4



Database1.42Dr. A. Taghinezhad

Aggregate Functions – Having Clause

▪ Find the names and average salaries of all 

departments whose average salary is greater than 

42000

▪ Note: predicates in the having clause are applied 

after the formation of groups whereas predicates in 

the where clause are applied before forming groups

select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name
having avg (salary) > 42000;
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Nested Subqueries

▪ SQL provides a mechanism for the nesting of subqueries. A subquery is a 

select-from-where expression that is nested within another query.

▪ The nesting can be done in the following SQL query

select A1, A2, ..., An

from r1, r2, ..., rm

where P

as follows:

• From clause: ri can be replaced by any valid subquery

• Where clause: P can be replaced with an expression of the form:

B <operation> (subquery)

B is an attribute and <operation> to be defined later.

• Select clause: 

Ai   can be replaced be a subquery that generates a single value.
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Set Membership
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Set Membership 

▪ Find courses offered in Fall 2017 and in Spring 2018

▪ Find courses offered in Fall 2017 but not in Spring 2018

select distinct course_id
from section
where semester = 'Fall' and year= 2017 and 

course_id in (select course_id
from section
where semester = 'Spring' and year= 2018);

select distinct course_id
from section
where semester = 'Fall' and year= 2017 and 

course_id not in (select course_id
from section
where semester = 'Spring' and year= 2018);
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Set Membership (Cont.)

▪ Name all instructors whose name is neither “Mozart” nor Einstein”

select distinct name
from instructor
where name not in ('Mozart', 'Einstein') 

▪ Find the total number of (distinct) students who have taken course 

sections taught by the instructor with ID 10101

▪ Note: Above query can be written in a much simpler manner.  

The formulation above is simply to illustrate SQL features

select count (distinct ID)

from takes
where (course_id, sec_id, semester, year) in 

(select course_id, sec_id, semester, year
from teaches
where teaches.ID= 10101);
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Set Comparison
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Set Comparison – “some” Clause

▪ Find names of instructors with salary greater than 

that of some (at least one) instructor in the Biology 

department.

▪ Same query using > some clause

select name
from instructor
where salary > some (select salary

from instructor
where dept name = 'Biology');

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept name = 'Biology';
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Definition of  “some” Clause

▪ F <comp> some r   t  r such that (F <comp> t )
Where <comp> can be:      = 

0
5

6

(5 < some ) = true

0
5

0

) = false

5

0
5(5  some ) = true (since 0  5)

(read:  5 < some tuple in the relation) 

(5 < some

) = true(5 = some

(= some)  in

However, ( some)  not in
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Set Comparison – “all” Clause

▪ Find the names of all instructors whose salary is greater than 

the salary of all instructors in the Biology department.
select name
from instructor
where salary > all (select salary

from instructor
where dept name = 'Biology');
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Definition of “all” Clause

▪ F <comp> all r   t  r (F <comp> t)

0
5

6

(5 < all ) = false

6
10

4

) = true

5

4
6(5  all ) = true (since 5  4 and 5  6)

(5 < all

) = false(5 = all

( all)  not in

However, (= all)  in
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Test for Empty Relations

▪ The exists construct returns the value true if the argument subquery is 

nonempty.

▪ exists r  r  Ø

▪ not exists r  r = Ø
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Use of “exists” Clause

select *
from نام جدول as مستعار
where [ شرط and ]

exists (Select Op);

▪ Correlation name – variable S  in the outer query

▪ Correlated subquery – the inner query
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Use of “exists” Clause

▪ Yet another way of specifying the query “Find all courses taught in both 

the Fall 2009 semester and in the Spring 2010 semester”

Q?
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Use of “exists” Clause

▪ Yet another way of specifying the query “Find all courses taught in both 

the Fall 2009 semester and in the Spring 2010 semester”

select course_id
from section as S
where semester = ’Fall’ and year = 2009 and 

exists (select *

from section as T
where semester = ’Spring’ and year= 2010 

and S.course_id = T.course_id);

▪ Correlation name – variable S  in the outer query

▪ Correlated subquery – the inner query
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Use of “not exists” Clause

▪ Find all students who have taken all courses offered in the 

Biology department.

• First nested query lists all courses offered in Biology

• Second nested query lists all courses a particular student took

Note that X – Y = Ø    X  Y

Note: Cannot write this query using = all and its variants

Q?
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Use of “not exists” Clause

▪ Find all students who have taken all courses offered in the 

Biology department.

select distinct S.ID, S.name
from student as S
where not exists ( (select course_id

from course
where dept_name = ’Biology’)

except

(select T.course_id
from takes as T
where S.ID = T.ID));

• First nested query lists all courses offered in Biology

• Second nested query lists all courses a particular student took

Note that X – Y = Ø    X  Y

Note: Cannot write this query using = all and its variants
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Test for Absence of Duplicate Tuples

▪ The unique construct tests whether a subquery has any 

duplicate tuples in its result.

▪ The unique construct evaluates to “true” if a given 

subquery contains no duplicates .

▪ select *
from نام جدول as مستعار
where [ شرط and ]

where unique (Select Operation)

▪ Find all courses that were offered at most once in 2009

Q?
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Test for Absence of Duplicate Tuples

▪ The unique construct tests whether a subquery has any duplicate tuples 

in its result.

▪ The unique construct evaluates to “true” if a given subquery contains no 

duplicates .

▪ Find all courses that were offered at most once in 2017

select T.course_id
from course as T
where unique ( select R.course_id

from section as R
where T.course_id= R.course_id

and R.year = 2017);
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Subqueries in the From Clause
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Subqueries in the Form Clause

▪ SQL allows a subquery expression to be used in the from clause

▪ Find the average instructors’ salaries of those departments where the 

average salary is greater than $42,000.”

select dept_name, avg_salary
from ( select dept_name, avg (salary) as avg_salary

from instructor
group by dept_name)

where avg_salary > 42000;

▪ Note that we do not need to use the having clause

▪ Another way to write above query

select dept_name, avg_salary
from ( select dept_name, avg (salary) 

from instructor
group by dept_name) 

as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;
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With Clause

▪ The with clause provides a way of defining a temporary relation whose 

definition is available only to the query in which the with clause occurs. 

▪ Find all departments with the maximum budget 

with max_budget (value) as 

(select max(budget)
from department)

select department.name
from department, max_budget
where department.budget = max_budget.value;
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Complex Queries using With Clause

▪ Find all departments where the total salary is greater than the 

average of the total salary at all departments

Q?
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Complex Queries using With Clause

▪ Find all departments where the total salary is greater than the 

average of the total salary at all departments

with dept _total (dept_name, value) as

(select dept_name, sum(salary)

from instructor
group by dept_name),

dept_total_avg(value) as

(select avg(value)

from dept_total)
select dept_name
from dept_total, dept_total_avg
where dept_total.value > dept_total_avg.value;
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Scalar Subquery

▪ Scalar subquery is one which is used where a single value is 

expected

▪ List all departments along with the number of instructors in each 

department

Q?
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Scalar Subquery

▪ Scalar subquery is one which is used where a single value is 

expected

▪ List all departments along with the number of instructors in each 

department

select dept_name, 

(select count(*) 

from instructor 
where department.dept_name = instructor.dept_name)

as num_instructors
from department;

▪ Runtime error if subquery returns more than one result tuple
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Modification of the Database

▪ Deletion of tuples from a given relation.

▪ Insertion of new tuples into a given relation

▪ Updating of values in some tuples in a given relation
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Deletion

▪ Delete all instructors

delete from instructor

▪ Delete all instructors from the Finance department

delete from instructor
where dept_name= 'Finance’;

▪ Delete all tuples in the instructor relation for those instructors associated 
with a department located in the Watson building.

delete from instructor
where dept name in (select dept name

from department
where building = 'Watson');
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Deletion (Cont.)

▪ Delete all instructors whose salary is less than the average salary of 

instructors

• Problem:  as we delete tuples from instructor, the average 

salary changes

• Solution used in SQL:

1. First, compute avg (salary) and find all tuples to delete

2. Next, delete all tuples found above (without recomputing 

avg or retesting the tuples)

delete from instructor
where salary < (select avg (salary) 

from instructor);
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Deletion

▪ Delete all tuples in the instructor relation for those instructors 

associated with a department located in the Watson building.Q?
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Deletion

▪ Delete all tuples in the instructor relation for those instructors 

associated with a department located in the Watson building.

delete from instructor
where dept name in (select dept name

from department
where building = ’Watson’);
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Insertion

▪ Add a new tuple to course

insert into course
values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

▪ or equivalently

insert into course (course_id, title, dept_name, credits)

values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

▪ Add a new tuple to student  with tot_creds set to null

insert into student
values ('3003', 'Green', 'Finance', null);
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Insertion (Cont.)

▪ Make each student in the Music department who has earned more than 

144 credit hours an instructor in the Music department with a salary of  

$18,000.

insert into instructor
select ID, name, dept_name, 18000
from student 
where dept_name = 'Music' and total_cred > 144;

▪ The select from where statement is evaluated fully before any of its 

results are inserted into the relation.  

Otherwise queries like

insert into table1 select * from table1

would cause problem
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Updates

▪ Give  a  5% salary raise to all instructors

update instructor
set salary = salary * 1.05

▪ Give  a 5% salary raise to those instructors who earn less than 70000

update instructor
set salary = salary * 1.05

where salary < 70000;

▪ Give  a 5% salary raise to instructors whose salary is less than average

update instructor
set salary = salary * 1.05

where salary <  (select avg (salary)

from instructor);
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Updates (Cont.)

▪ Increase salaries of instructors whose salary is over $100,000 by 3%, and 

all others by a 5% 

• Write two update statements:

update instructor
set salary = salary * 1.03

where salary > 100000;

update instructor
set salary = salary * 1.05

where salary <= 100000;

• The order is important

• Can be done better using the case statement (next slide)
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Case Statement for Conditional Updates

▪ Same query as before but with case statement

update instructor
set salary = case

when salary <= 100000 then salary * 1.05

else salary * 1.03

end
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Updates with Scalar Subqueries

▪ Recompute and update tot_creds value for all students

update student S 
set tot_cred = (select sum(credits)

from takes, course
where takes.course_id = course.course_id and 

S.ID= takes.ID.and

takes.grade <> 'F' and

takes.grade is not null);

▪ Sets tot_creds to null for students who have not taken any course

▪ Instead of sum(credits), use:

case 

when sum(credits) is not null then sum(credits)

else 0

end
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End of Chapter 3


