SEVENTH EDITION

Database System Concepts

odlo oL 2k (ool 73

By Dr. Taghinezhad

Abraham Silberschatz .
“ 7 HenryF.Korth _
Mail: ~~-S.Sudarshan -

Mc
Graw
Hill
Education

Dr. A. Taghinezhad 1.1

Database

mailto:a0taghinezhad@gmail.com

Chapter 3: Introduction to SQL

Database System Concepts, 7t Ed.

©Silberschatz, Korth and Sudarshan
See for conditions on re-use

http://www.db-book.com/

Outline

= QOverview of The SQL Query Language
= SQL Data Definition

= Basic Query Structure of SQL Queries
= Additional Basic Operations

= Set Operations

= Null Values

= Aggregate Functions

= Nested Subqueries

= Modification of the Database

Dr. A. Taghinezhad 1.3 Database

History

= |BM Sequel language developed as part of System R project at the
IBM San Jose Research Laboratory

= Renamed Structured Query Language (SQL)
= ANSI and ISO standard SQL:
SQL-86
SQL-89
SQL-92
SQL:1999 (language name became Y2K compliant!)
SQL:2003

= Commercial systems offer most, if not all, SQL-92 features, plus
varying feature sets from later standards and special proprietary
features.

Not all examples here may work on your particular system.

Dr. A. Taghinezhad 1.4 Database

SQL Parts

DML -- provides the ability to query information from the
database and to insert tuples into, delete tuples from, and
modify tuples in the database.

Integrity — the DDL includes commands for specifying integrity
constraints.

View definition -- The DDL includes commands for defining
Views.

Transaction control —includes commands for specifying the
beginning and ending of transactions.

Embedded SQL and dynamic SQL -- define how SQL
statements can be embedded within general-purpose
programming languages.

Authorization — includes commands for specifying access
rights to relations and views.

Dr. A. Taghinezhad i85 Database

Data Definition Language

The SQL data-definition language (DDL) allows the specification of
information about relations, including:

The schema for each relation.

The type of values associated with each
attribute.

The Integrity constraints

The set of iIndices to be maintained for each
relation.

Security and authorization information for
each relation.

The physical storage structure of each
relation on disk.

Dr. A. Taghinezhad 1.6

Database

Domain Types in SQL

= char(n). Fixed length character string, with user-specified length n.

= varchar(n). Variable length character strings, with user-specified
maximum length 7.

= int. Integer (a finite subset of the integers that is machine-dependent).

= smallint. Small integer (a machine-dependent subset of the integer
domain type).

= numeric(p,d). Fixed point number, with user-specified precision of p
digits, with d digits to the right of decimal point. (ex., numeric(3,1), allows
44.5 to be stores exactly, but not 444.5 or 0.32)

= real, double precision. Floating point and double-precision floating point
numbers, with machine-dependent precision.

= float(n). Floating point number, with user-specified precision of at least 7
digits.
= More are covered in Chapter 4.

Dr. A. Taghinezhad 1.7 Database

Create Table Construct

= An SQL relation is defined using the create table command:

create table r

(A D, A D, .. A, D,
(integrity-constraint,),

(ir-1-t.’egrity-constraintk))
ris the name of the relation
each A;is an attribute name in the schema of relation r
D:is the data type of values in the domain of attribute A;
= Example: How to create the Instructor Database?

create table /nstructor (
/D char(5),
name varchar(20),
dept name varchar(20),
salary numeric(8,2))

Dr. A. Taghinezhad 1.8

Database

Integrity Constraints in Create Table

= Types of integrity constraints
primary key (A4, ..., A,)
foreign key (A, ..., 4,) references r
not null

= SQL prevents any update to the database that violates an integrity
constraint.

= Example:

create table /nstructor (

/D char(5),

name varchar(20) not null,
dept name varchar(20),

salary numeric(8,2),

primary key (/D),
foreign key (dept_name) references department);

Dr. A. Taghinezhad 1.9 Database

And a Few More Relation Definitions

= create table student (

/D varchar(b),

name varchar(20) not null,
dept name varchar(20),

tot cred numeric(3,0),

primary key (/D)
foreign key (dept_name) references departmeni),

= create table rakes (

/D varchar(5),
course /d varchar(8),
sec id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),

primary key (/D, course id, sec Id, semester, year),
foreign key (/D) references student,

foreign key (course id, sec id, semester, year) references
section),

Dr. A. Taghinezhad 1.10 Database

And more still

" create table course (
course _id varchar(8),

title varchar(50),
dept name varchar(20),
credits numeric(2,0),

primary key (course id),
foreign key (dept_name) references departmeni);

Dr. A. Taghinezhad 1.11 Database

Updates to tables

Insert
Insert into /nstructorvalues ('10211', 'Smith', 'Biology’, 66000);

= Delete

Remove all tuples from the student relation

delete from student

= Drop Table

drop table r
= Alter
alter table radd A D

where A is the name of the attribute to be added to relation r and
D 1s the domain of A.

All exiting tuples in the relation are assigned rnu// as the value for
the new attribute.

alter table rdrop A

where A is the name of an attribute of relation r
or. A Taghinezhad © DFOPPING of attributes not sypported by many databases.

Database

Basic Query Structure

= A typical SQL query has the form:

select A, 4,, ..., A
fromn, n, ..., 1,
where P

n

A;represents an attribute
R represents a relation
P1s a predicate.

= The result of an SQL query is a relation.

Dr. A. Taghinezhad 1.13

The select Clause

" The select clause lists the attributes desired in the result of
a query

corresponds to the projection operation of the relational
algebra

= Example: find the names of all instructors:
select name
from /nstructor

= NOTE: SQL names are case insensitive (i.e., you may use
upper- or lower-case letters.)

E.g., Name = NAME = name

Some people use upper case wherever we use bold font.

Dr. A. Taghinezhad 1.14 Database

The select Clause (Cont.)

= SQL allows duplicates in relations as well as in
guery results.

= To force the elimination of duplicates, insert the | deptname
keyword distinct after select. Comp. Sci.
" Find the department names of all instructors, and ﬁnaﬁce
remove duplicates i
P Physics
select distinct dept_name History
from /nstructor Physics
- : Comp. Sci.
= The keyword all specifies that duplicates should Histoliy
not be removed. Finanes
Biology
select. all dept name Comp. Sci.
from /nstructor Elec. Eng.

Dr. A. Taghinezhad 1.15 Database

The select Clause (Cont.)

= An asterisk (*) in the select clause denotes “all attributes”

select *
from /nstructor

= An attribute can be a literal with no from clause
select '437"
Results is a table with one column and a single row with value “437”
Can give the column a name using:
select '437' as FOO
= An attribute can be a literal with from clause

select 'A’
from /nstructor

Result is a table with one column and A rows (number of tuples in
the /nstructors table), each row with value “A’

Dr. A. Taghinezhad 1.16 Database

The select Clause (Cont.)

= The select clause can contain arithmetic expressions
Involving the operation, +, —, *, and /, and operating on
constants or attributes of tuples.

What would be the result of a query that returns a
relation identical to the instructor relation, except

with the value of the attribute "salary" divided by
127

Dr. A. Taghinezhad 1.17

Database

The select Clause (Cont.)

The query:

select /D, name, salary/12
from /nstructor

would return a relation that is the same as the /nstructor
relation, except that the value of the attribute sa/aryis
divided by 12.

Can rename “salary/12”using the as clause:
select /D, name, salary/12 as monthly salary

Dr. A. Taghinezhad 1.18 Database

The where Clause

The where clause specifies conditions that the result must satisfy
Corresponds to the selection predicate of the relational algebra.
= To find all instructors in Comp. Sci. dept

select name
from /nstructor
where dept name = Comp. Sci.'

= SQL allows the use of the logical connectives and, or, and not

= The operands of the logical connectives can be expressions involving the
comparison operators <, <=, >, >=, =, and <>,

= Comparisons can be applied to results of arithmetic expressions
= To find all instructors in Comp. Sci. dept with salary > 70000

name

select name
from /nstructor Katz
where dept_name = Comp. Sci.' and salary > 70000 LIl

Dr. A. Taghinezhad 1.19 Database

The from Clause

= The from clause lists the relations involved in the query

Corresponds to the Cartesian product operation of the
relational algebra.

= Find the Cartesian product /nstructor X teaches

select *
from /nstructor, teaches

generates every possible instructor — teaches pair, with all
attributes from both relations.

For common attributes (e.qg., /D), the attributes In the

resulting table are renamed using the relation name (e.g.,
/nstructor. /D)

= Cartesian product not very useful directly, but useful
combined with where-clause condition (selection operation in
relational algebra).

Dr. A. Taghme%a 1.20

Database

Examples

= Find the names of all instructors who have taught fame courseid
some course and the course_id Srinivasan | CS-101
select name, course_id Srinivasan | CS-315
from instructor , teaches Srinivasan | CS-347
where instructor./D = teaches.ID Vi U2
Mozart MU-199

Einstein PHY-101
El Said HIS-351

= Find the names of all instructors in the Art
department who have taught some course and the

I Katz CS-101
= _ Katz CS-319
select name, course id Crick BIO-101
from /nstructor, teaches Crick BI0-301
where /nstructor./D = teaches./D Brandt CS-190
and instructor. dept_name ='Art’ Brandt CS-190

Brandt CS-319
Kim EE-181

Dr. A. Taghinezhad 1.21 Database

The Rename Operation

= The SQL allows renaming relations and attributes using the
as clause:

old-name as new-name

= Find the names of all instructors who have a higher salary
than
some instructor in ‘Comp. Sci'.

select distinct 7.name

from /nstructor as T, instructoras S

where 7.salary > S.salary and S.dept name = '‘Comp.
Scl.’

= Keyword as is optional and may be omitted
/nstructoras T = instructor T

Dr. A. Taghinezhad 1.22 Database

Self Join Example

= Relation emp-super

person | supervisor

Bob Alice
Mary Susan
Alice David
David Mary

= Find the supervisor of “Bob”

= Find the supervisor of the supervisor of “Bob”

= Can you find ALL the supervisors (direct and
iIndirect) of “Bob™?

Dr. A. Taghinezhad 1.23

String Operations

= SQL includes a string-matching operator for comparisons on character
strings. The operator like uses patterns that are described using two
special characters:

percent (%). The % character matches any substring.
underscore (_). The _ character matches any character.

= Find the names of all instructors whose name includes the substring
“dar”.

select name
from /nstructor
where name like "%dar%’

= Match the string “100%"
like "100 \%' escape '\
In that above we use backslash (\) as the escape character.

Dr. A. Taghinezhad 1.24 Database

String Operations (Cont.)

= Patterns are case sensitive.
= Pattern matching examples:
'Intro%"' matches any string beginning with “Intro”.

'%Comp%' matches any string containing “Comp” as a
substring.

_"matches any string of exactly three characters.

_ %' matches any string of at least three characters.

= SQL supports a variety of string operations such as
concatenation (using “||")
converting from upper to lower case (and vice versa)
finding string length, extracting substrings, etc.

Dr. A. Taghinezhad 1.25 Database

Ordering the Display of Tuples

= List in alphabetic order the names of all
Instructors

select distinct name
from /nstructor
order by name

= We may specify desc for descending order or
asc for ascending order, for each attribute;
ascending order is the default.

Example: order by name desc
= Can sort on multiple attributes

Example: order by dept name, name

Dr. A. Taghinezhad 1.26

Where Clause Predicates

= SQL includes a between comparison operator

= Example: Find the names of all instructors with salary
between $90,000 and $100,000 (that is, > $90,000 and
< $100,000)

select name
from /nstructor
where sal/ary between 90000 and 100000

= Tuple comparison

select name, course _id

from /nstructor, teaches

where (/nstructor./D, dept_name) = (teaches./D,
'‘Biology');

Dr. A. Taghinezhad 1.27

Database

Set Operations

= Find courses that ran in Fall 2017 or in Spring 2018

(select course id from section where sem ='Fall' and year =2017)
union
(select course id from sectionwhere sem ='Spring' and year =2018)

= Find courses that ran in Fall 2017 and in Spring 2018

(select course id from section where sem ='Fall' and year =2017)
Intersect
(select course id from section where sem ='Spring' and year =2018)

= Find courses that ran in Fall 2017 but not in Spring 2018

(select course id from section where sem ='Fall' and year =2017)

except
(select course 1d from sectionwhere sem ='Spring' and year =2018)

Dr. A. Taghinezhad 1.28

Database

Set Operations (Cont.)

= Set operations union, intersect, and except

Each of the above operations automatically
eliminates duplicates

= To retain all duplicates use the
union all,
Intersect all
except all.

Dr. A. Taghinezhad 1.29 Database

Null Values

= |tis possible for tuples to have a null value, denoted by null,
for some of their attributes

= null signifies an unknown value or that a value does not exist.

= The result of any arithmetic expression involving null is null
Example: 5+ null returns null

= The predicate is null can be used to check for null values.
Example: Find all instructors whose salary is null.

select name
from /nstructor
where salary is null

"= The predicate is not null succeeds if the value on which it is
applied is not null.

Dr. A. Taghinezhad 1.30 Database

Null Values (Cont.)

= SQL treats as unknown the result of any comparison involving a null
value (other than predicates is null and is not null).

Example. 5 <null or null <>null or null =null

= The predicate in a where clause can involve Boolean operations (and,
or, not); thus the definitions of the Boolean operations need to be
extended to deal with the value unknown.

and : (frue and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

or: (unknownor true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown

= Result of where clause predicate is treated as 7alseif it evaluates to
unknown

Dr. A. Taghinezhad 1.31 Database

Aggregate Functions

= These functions operate on the multiset of
values of a column of a relation, and
return a value

avg. average value

min: minimum value
max: maximum value
sum: sum of values
count: number of values

Dr. A. Taghinezhad 1.32

Database

Aggregate Functions Examples

= Find the average salary of instructors in the Computer
Science department

select avg (sa/ary)
from /nstructor
where dept name="'Comp. Scl.";

" Find the total number of instructors who teach a course In
the Spring 2018 semester

select count (distinct /D)
from teaches
where semester="Spring' and year= 2018;

= Find the number of tuples in the course relation

select count (*)
from course,

Dr. A. Taghinezhad 1.33

Database

= Find the average salary of instructors in each department

Aggregate Functions — Group By

select dept name, avqg (salary) as avg _salary
from /nstructor
group by dept name,

ID name dept_name salary
76766 | Crick Biology 72000
45565 | Katz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. | 65000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000
12121 | Wu Finance 90000
76543 | Singh Finance 80000
32343 | EIl Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 | Einstein Physics 95000

Dr. A. Taghinezhad

1.34

dept_name avg_salary
Biology 72000
Comp. Sci. | 77333
Elec. Eng. 30000
Finance 85000
History 61000
Music 40000
Physics 91000

Database

Aggregation (Cont.)

= Attributes in select clause outside of aggregate
functions must appear in group by list

[* erroneous query */

select dept name, ID, avg (salary)
from /nstructor

group by dept name,

Dr. A. Taghinezhad 1.35

S

S# Shame

sl Fanavara
n

s2 lIran
Segment

s3 Pooladin

Dr. A. Taghinezhad

City
Tehran

Tabriz

Tabriz

Example

¢l oo; Ay ‘)PZ 0SS dgS S S ez -

P#
P1
P2

P3

P4

Color
Red
Green

Blue

Red

1.36

Type
Iron

Copp
er

Bras

Iron

City
Tehran
Tabriz
Shiraz

Tehran

SP

S#

sl

s2

s3

s2

s2

s3

P#

P1

P2

P3

P1

P2

P2

Qty

300

200

400

300

400

200

Database

S

S# Sname

sl Fanavaran

s2 Iran
Segment

s3 Pooladin

Dr. A. Taghinezhad

City

Tehran

Tabriz

Tabriz

P#
P1
P2
P3
P4

Example

a3l 00,5 ags |,P2 oS ags ai> oS aie ™

Select count(*) from SP where p#="P2’ =

Color
Red
Green
Blue
Red

1.37

Type
Iron
Copper
Brass

Iron

City
Tehran
Tabriz
Shiraz

Tehran

SP
S#
sl
s2
s3
s2
s2
s3

P#
P1
P2
P3
P1
P2
P2

Qty
300
200
400
300
400

200 Database

Example

o)Lo.&lgo‘).c@A.ng u‘9.> Jga:?)o ‘)AJ.ESJ.@)‘ oMc\...Q;)‘A.odoJf -

S

S# Sname

sl Fanavaran

s2 Iran
Segment

s3 Pooladin

Dr. A. Taghinezhad

City

Tehran

Tabriz

Tabriz

P#
P1
P2
P3
P4

Color
Red
Green
Blue
Red

1.38

Type
Iron
Copper
Brass

Iron

City
Tehran
Tabriz
Shiraz

Tehran

SP
S#
sl
s2
s3
s2
s2
s3

P#
P1
P2
P3
P1
P2
P2

dxlad

Qty
300
200
400
300
400

200 Database

S
S#

sl

s2

s3

Dr. A. Taghinezhad

Sname
Fanavaran
Iran
Segment

Pooladin

Example

axlad o)lols L ol jo d2a0s Olgz Jgum jo 1, dxdad (2 5l ooy agd Jlode J5° ™
Select P#, SUM(Qty) from SP Group By P# =

City

Tehran

Tabriz

Tabriz

P#
P1
P2
P3
P4

Color
Red
Green
Blue
Red

1.39

Type
Iron
Copper
Brass

Iron

City
Tehran
Tabriz
Shiraz

Tehran

SP
S#
sl
s2
s3
s2
s2
s3

P#
P1
P2
P3
P1
P2
P2

Qty
300
200
400
300
400

200 Database

Example

5,85 i o aau |y ol 5l el ags olasd peu STl g dlaxd S caxdad o leds codls dgd dnlad o (ol
sas Sl

SP
S P
- S# P# t
S# Sname City P# Color Type City Y
sl P1 300
sl Fanavaran Tehran P1 Red Iron Tehran
= G = . s2 P2 200
i P reen opper Tabriz
s2 gan \ Tabriz pp <3 P3 400
el P3 Blue Brass Shiraz 5 = .
. . S
s3 Pooladin Tabriz P4 Red I S

s2 P2 400

Dr. A. Taghinezhad 1.40 s3 P2 200 patabase

Example

58,8 i o aau | ol 5l eals ags olaxd pes jSTle g olawd S caxdad o)lels ool agi anlad 2 gl ™
s Sl

= Select P#, SUM(Qty),MAX(Qty)
= From SP

= Where S# =SV

= Group By P#

SP
S P
. S# P# t
S# Sname City P# Color Type City 2
sl P1 300
sl Fanavaran Tehran P1 Red Iron Tehran
X . = o s2 P2 200
i P reen opper Tabriz
s2 Ist;an : Tabriz PP s3 P3 400
egmen P3 Blue Brass Shiraz 5 Py 300
. : S
s3 Pooladin Tabriz P4 Red Iron Tehran

s2 P2 400

Dr. A. Taghinezhad 1.41 s3 P2 200 patabase

Aggregate Functions — Having Clause

= Find the names and average salaries of all
departments whose average salary is greater than
42000

select dept_name, avg (salary) as avg _salary
from /nstructor

group by dept name

having avg (sa/ary) > 42000;

= Note: predicates in the having clause are applied
after the formation of groups whereas predicates In
the where clause are applied before forming groups

Dr. A. Taghinezhad 1.42 Database

Nested Subqueries

= SQL provides a mechanism for the nesting of subqueries. A subquery Is a
select-from-where expression that is nested within another query.

= The nesting can be done in the following SQL query

select A, A,, ..., A
fromnr, 1, ..., I,
where P

n

as follows:
From clause: r; can be replaced by any valid subquery
Where clause: Pcan be replaced with an expression of the form:
B <operation> (subquery)
Bis an attribute and <operation> to be defined later.
Select clause:

A; can be replaced be a subquery that generates a single value.

Dr. A. Taghinezhad 1.43 Database

Set Membership

Dr. A. Taghinezhad 1.44 Database

Set Membership

= Find courses offered in Fall 2017 and in Spring 2018

select distinct course id
from section
where semester = 'Fall' and year= 2017 and
course_idin (select course id
from section
where semester = 'Spring' and year= 2018);

= Find courses offered in Fall 2017 but not in Spring 2018

select distinct course id
from section
where semester ="Fall' and year= 2017 and
course _id not in (select course id
from section
where semester="Spring' and year= 2018);

Dr. A. Taghinezhad 1.45

Database

Set Membership (Cont.)

= Name all instructors whose name is neither “Mozart” nor Einstein”

select distinct name
from /nstructor
where name not in (‘Mozart', 'Einstein’)

= Find the total number of (distinct) students who have taken course
sections taught by the instructor with /D0 10101

select count (distinct /D)

from takes

where (course _id, sec id, semester, year) in
(select course id, sec id, semester, year
from teaches
where feaches./D=10101);

= Note: Above query can be written in a much simpler manner.
The formulation above is simply to illustrate SQL features

Dr. A. Taghinezhad 1.46

Database

Set Comparison

Dr. A. Taghinezhad 1.47 Database

Set Comparison — “some” Clause

= Find names of instructors with salary greater than
that of some (at least one) instructor in the Biology

department.

select distinct 7.name
from /nstructor as T, instructoras S
where 7.salary > S.salary and S.dept name = 'Biology’;

= Same query using > some clause

select name
from /nstructor
where salary > some (select salary
from /nstructor
where dept name = 'Biology");

Dr. A. Taghinezhad 1.48

Database

Definition of “some” Clause

" F <comp>some r< 3 te r such that (F <comp> ¢)
Where <comp>can be: <, <, >, = #

0
(5<some | § |)=true
6 (read: 5 < some tuple in the relation)
0
(5<some | § |)=false
0
(5=some| §5 |) =true
0
(5# some | 5 |) =true (since 0 # 5)

(=some) =in
However, (= some) 7é not in

Dr. A. Taghinezhad 1.49 Database

Set Comparison — “all” Clause

= Find the names of all instructors whose salary is greater than

the salary of all instructors in the Biology department.
select name

from /nstructor
where salary > all (select salary
from /nstructor
where dept name = 'Biology");

Dr. A. Taghinezhad 1.50 Database

Definition of “all” Clause

* F<comp>all r< Ve r (F<comp> ¢)

0
(6<all | 5|)=false
6
6
(5<all [10]|) =true
4
(5=all| § |)="false
4
(5#all| 6 |)=true (since 5# 4 and 5 # 6)

(zall)=notin
However, (= all) £ in

Dr. A. Taghinezhad 1.51 Database

Test for Empty Relations

The exists construct returns the value true if the argument subquery is
nonempty.

" exists re r# 0
= pnotexistsre r=9gd

Dr. A. Taghinezhad 1.52 Database

Use of “exists” Clause

select *
from _fu> o 8S leiuo
where [&£,s5and |

exists (Select Op);

= Correlation name — variable S in the outer query
= Correlated subquery — the inner query

Dr. A. Taghinezhad 1.53 Database

Use of “exists” Clause

= Yet another way of specifying the query “Find all courses taught in both
the Fall 2009 semester and in the Spring 2010 semester”

Q7

Dr. A. Taghinezhad 1.54 Database

Use of “exists” Clause

= Yet another way of specifying the query “Find all courses taught in both
the Fall 2009 semester and in the Spring 2010 semester”

select course id
from sectionas S
where semester="Fall’ and year= 2009 and
exists (select *
from sectionas T
where semester="Spring’ and year= 2010
and S.course 1d= T.course _ia),

= Correlation name — variable S in the outer query
= Correlated subquery — the inner query

Dr. A. Taghinezhad 1.55 Database

Use of “not exists” Clause

= Find all students who have taken all courses offered in the
Biology department.

Q7

» First nested query lists all courses offered in Biology
« Second nested query lists all courses a particular student took

0 Notethat X—Y =0 < XcVY
0 MNote: Cannot write this query using = all and its variants

Dr. A. Taghinezhad 1.56 Database

Use of “not exists” Clause

= Find all students who have taken all courses offered in the
Biology department.

select distinct S./D, S.name
from studentas S
where not exists ((select course id
from course
where dept name = 'Biology’)
except
(select T.course id
from takesas T
where S./D = T./D));

» First nested query lists all courses offered in Biology
« Second nested query lists all courses a particular student took

0 Notethat X—Y =0 < XcVY
0 MNote: Cannot write this query using = all and its variants

Dr. A. Taghinezhad 1.57

Database

Test for Absence of Duplicate Tuples

= The unique construct tests whether a subquery has any
duplicate tuples in its result.

= The unique construct evaluates to “true” if a given
subguery contains no duplicates .

= select
from _ju> ol @S leins
where [&,.5and |
where unique (Select Operation)

= Find all courses that were offered at most once in 2009

Q?

Dr. A. Taghinezhad 1.58 Database

Test for Absence of Duplicate Tuples

= The unique construct tests whether a subquery has any duplicate tuples
In its result.

= The unique construct evaluates to “true” if a given subquery contains no
duplicates .

= Find all courses that were offered at most once in 2017

select 7.course id
from courseas T
where unique (select R.course id
from sectionas R
where T.course ia= R.course id
and R.year= 2017);

Dr. A. Taghinezhad 1.59

Database

Subqgueries in the From Clause

Dr. A. Taghinezhad 1.60 Database

Subqgueries in the Form Clause

= SQL allows a subquery expression to be used in the from clause

= Find the average instructors’ salaries of those departments where the
average salary is greater than $42,000.”

select dept name, avg salary

from (select dept _name, avg (salary) as avg_salary
from /nstructor
group by dept name)

where avg salary > 42000;

= Note that we do not need to use the having clause
= Another way to write above query

select dept name, avg salary
from (select dept_name, avg (salary)

from /nstructor

group by dept name)

as dept_avg (dept_name, avg _salary)
where avg salary > 42000;

Dr. A. Taghinezhad 1.61

Database

With Clause

The with clause provides a way of defining a temporary relation whose

definition is available only to the query in which the with clause occurs.

Find all departments with the maximum budget

with max_budget (value) as
(select max(buadgel)
from department)
select department.name
from department, max_budget
where department. budget = max_budget. value,

Dr. A. Taghinezhad 1.62

Database

Complex Queries using With Clause

Q?

adwvisor

s_id
i i

= Find all departments where the total salary is greater than the
average of the total salary at all departments
e student
1D p ID ot
course_id %”;emm
id —]
ggfnester tol_ored
year
grade
section COUYSE
W course id < __E course id department
py sec id B title ,_"'; dept_name
—; %‘35337’ - : dezit?mme > Ll ding
| building tirie_slot e budget
|| room_no time_slot id
time_slot_id day
start time
end_time
prereq instructor
classroom — course_id iD
| building | prereg id name
B FOOMI_RO dept_nate
capacity teaches salary
D
course_id
sec id
semester
year
1.63

Dr. A. Taghinezhad

Database

Complex Queries using With Clause

= Find all departments where the total salary is greater than the
average of the total salary at all departments

with dept _total (dept name, value) as
(select dept _name, sum(salary)
from /nstructor
group by dept name),
dept total avg(value) as
(select avg(value)
from dept total)
select dept name
from dept total, dept total avg
where dept total.value > dept total avg.value,

Dr. A. Taghinezhad 1.64 Database

Scalar Subquery

= Scalar subguery is one which is used where a single value is

expected
= List all departments along with the number of instructors in each
department
F e student Q n
}45) p 1D Bl
course_id %ﬂ;‘gmm
z'd !
izfnesfer bi_ored
year
grade
section COnYse
M course id P course_id departruent advisor
sec id i : _—
—_: semester : gé;)et name P @Ma I f_:g
" e * tine_slot credits be g -
—| building = budget
1| room_no time_slot_id
time_slot_id day
start time
end_time
preveq instructor
classroom —| course_id D >
Lp| building | prereq id name
p FOOM R0 dept_name
capacity teaches salary
ID
L course_id
L_| sec id
semester
year

Dr. A. Taghinezhad 1.65 Database

Scalar Subquery

= Scalar subguery is one which is used where a single value is
expected

= List all departments along with the number of instructors in each
department

select dept_name,
(select count(*)
from /nstructor
where department.dept _name = instructor.dept_name)
as num_instructors
from department,

= Runtime error if subguery returns more than one result tuple

Dr. A. Taghinezhad 1.66 Database

Modification of the Database

Deletion of tuples from a given relation.

Insertion of new tuples into a given relation

Updating of values in some tuples in a given relation

Dr. A. Taghinezhad 1.67 Database

Dr. A. Taghinezhad

Deletion

Delete all instructors
delete from /nstructor

Delete all instructors from the Finance department
delete from /nstructor
where dept name= 'Finance’,

Delete all tuples in the instructor relation for those instructors associated
with a department located in the Watson building.

delete from /nstructor
where dept name in (select dept name
from department
where building = "Watson');

1.68

Database

Deletion (Cont.)

= Delete all instructors whose salary is less than the average salary of
Instructors

delete from /nstructor
where salary < (select avg (salary)
from /nstructor);

Problem: as we delete tuples from /nstructor, the average
salary changes

Solution used in SQL.:
First, compute avg (salary) and find all tuples to delete

Next, delete all tuples found above (without recomputing
avg or retesting the tuples)

Dr. A. Taghinezhad 1.69 Database

Deletion

= Delete all tuples in the /nstructorrelation for those instructo >
associated with a department located in the Watson buildin Q -

Fis student
@ p D it
course_td %ﬁ;g
sec id | i
semester fot_cred
year
grade
section course
B course id ” __E course_id department aduvisor
Lp| sec id < title dept_name s i _
— semester > dept_name P 2 30 — i
B year ™ T Tof s i building L
| building HMigeCee budget
| | room_no time_slot id
time slot_id 4
start time
end_time
prereq instructor
classroom — course id iD
| building | prereg i name
» TOO RO dept_name
capacity teaches salary
D
L_| course_id
L__| sec id
semester
year

Dr. A. Taghinezhad 1.70 Database

Deletion

= Delete all tuples in the /nstructor relation for those instructors
associated with a department located in the Watson building.

delete from /nstructor
where dept name in (select dept name
from department
where building = 'Watson’);

Dr. A. Taghinezhad 1.71 Database

Insertion

= Add a new tuple to course

insert into course
values ('CS-437', 'Database Systems', '‘Comp. Sci.', 4);

= or equivalently

insert into course (course _id, title, dept _name, credits)
values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

= Add a new tuple to student with fot creds set to null

insert into student
values ('3003', 'Green', 'Finance', null);

Dr. A. Taghinezhad 1.72 Database

Insertion (Cont.)

= Make each student in the Music department who has earned more than
144 credit hours an instructor in the Music department with a salary of

$18,000.

insert into /nstructor
select /D, name, dept name, 18000

from student
where dept_name = Music' and fotal _cred > 144,

= The select from where statement is evaluated fully before any of its
results are inserted into the relation.

Otherwise queries like
insert into fablel select * from tablel

would cause problem

Dr. A. Taghinezhad 1.73 Database

Updates

= Give a 5% salary raise to all instructors

update /nstructor
set salary = salary* 1.05

= Give a 5% salary raise to those instructors who earn less than 70000
update /nstructor
set salary = salary* 1.05
where salary < 70000;

= Give a 5% salary raise to instructors whose salary is less than average

update /nstructor

set salary = salary* 1.05

where salary < (select avg (salary)
from /nstructor);

Dr. A. Taghinezhad 1.74 Database

Updates (Cont.)

= |ncrease salaries of instructors whose salary is over $100,000 by 3%, and
all others by a 5%

Write two update statements:

update /nstructor
set salary = salary* 1.03
where salary > 100000;
update /nstructor
set salary = salary* 1.05
where salary <= 100000;

The order is important
Can be done better using the case statement (next slide)

Dr. A. Taghinezhad 1.75 Database

Case Statement for Conditional Updates

= Same query as before but with case statement

update /nstructor
set salary = case
when salary <= 100000 then salary* 1.05
else salary* 1.03
end

Dr. A. Taghinezhad 1.76 Database

Updates with Scalar Subqueries

= Recompute and update tot_creds value for all students

update student S
set fot cred = (select sum(credits)
from takes, course
where takes.course id = course.course id and
S.ID= takes./D.and
takes.grade <> 'F' and
takes.grade is not null);

= Sets fot creds to null for students who have not taken any course
= |nstead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)
else O

end

Dr. A. Taghinezhad 1.77 Database

End of Chapter 3

Dr. A. Taghinezhad 1.78 Database

