
Database1.1Dr. A. Taghinezhad

اصول طراحی پایگاه داده

Mail:

a0taghinezhad@gmail.com

By Dr. Taghinezhad

mailto:a0taghinezhad@gmail.com

Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 3: Introduction to SQL

http://www.db-book.com/

Database1.3Dr. A. Taghinezhad

Outline

▪ Overview of The SQL Query Language

▪ SQL Data Definition

▪ Basic Query Structure of SQL Queries

▪ Additional Basic Operations

▪ Set Operations

▪ Null Values

▪ Aggregate Functions

▪ Nested Subqueries

▪ Modification of the Database

Database1.4Dr. A. Taghinezhad

History

▪ IBM Sequel language developed as part of System R project at the

IBM San Jose Research Laboratory

▪ Renamed Structured Query Language (SQL)

▪ ANSI and ISO standard SQL:

• SQL-86

• SQL-89

• SQL-92

• SQL:1999 (language name became Y2K compliant!)

• SQL:2003

▪ Commercial systems offer most, if not all, SQL-92 features, plus

varying feature sets from later standards and special proprietary

features.

• Not all examples here may work on your particular system.

Database1.5Dr. A. Taghinezhad

SQL Parts

▪ DML -- provides the ability to query information from the

database and to insert tuples into, delete tuples from, and

modify tuples in the database.

▪ integrity – the DDL includes commands for specifying integrity

constraints.

▪ View definition -- The DDL includes commands for defining

views.

▪ Transaction control –includes commands for specifying the

beginning and ending of transactions.

▪ Embedded SQL and dynamic SQL -- define how SQL

statements can be embedded within general-purpose

programming languages.

▪ Authorization – includes commands for specifying access

rights to relations and views.

Database1.6Dr. A. Taghinezhad

Data Definition Language

▪ The schema for each relation.

▪ The type of values associated with each

attribute.

▪ The Integrity constraints

▪ The set of indices to be maintained for each

relation.

▪ Security and authorization information for

each relation.

▪ The physical storage structure of each

relation on disk.

The SQL data-definition language (DDL) allows the specification of

information about relations, including:

Database1.7Dr. A. Taghinezhad

Domain Types in SQL

▪ char(n). Fixed length character string, with user-specified length n.

▪ varchar(n). Variable length character strings, with user-specified
maximum length n.

▪ int. Integer (a finite subset of the integers that is machine-dependent).

▪ smallint. Small integer (a machine-dependent subset of the integer
domain type).

▪ numeric(p,d). Fixed point number, with user-specified precision of p
digits, with d digits to the right of decimal point. (ex., numeric(3,1), allows
44.5 to be stores exactly, but not 444.5 or 0.32)

▪ real, double precision. Floating point and double-precision floating point
numbers, with machine-dependent precision.

▪ float(n). Floating point number, with user-specified precision of at least n
digits.

▪ More are covered in Chapter 4.

Database1.8Dr. A. Taghinezhad

Create Table Construct

▪ An SQL relation is defined using the create table command:

create table r

(A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),

...,

(integrity-constraintk))

• r is the name of the relation

• each Ai is an attribute name in the schema of relation r

• Di is the data type of values in the domain of attribute Ai

▪ Example: How to create the Instructor Database?

create table instructor (

ID char(5),

name varchar(20),

dept_name varchar(20),

salary numeric(8,2))

Database1.9Dr. A. Taghinezhad

Integrity Constraints in Create Table

▪ Types of integrity constraints

• primary key (A1, ..., An)

• foreign key (Am, ..., An) references r

• not null

▪ SQL prevents any update to the database that violates an integrity

constraint.

▪ Example:

create table instructor (

ID char(5),

name varchar(20) not null,

dept_name varchar(20),

salary numeric(8,2),

primary key (ID),

foreign key (dept_name) references department);

Database1.10Dr. A. Taghinezhad

And a Few More Relation Definitions

▪ create table student (
ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),
primary key (ID),
foreign key (dept_name) references department);

▪ create table takes (
ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),
primary key (ID, course_id, sec_id, semester, year) ,
foreign key (ID) references student,

foreign key (course_id, sec_id, semester, year) references
section);

Database1.11Dr. A. Taghinezhad

And more still

▪ create table course (

course_id varchar(8),

title varchar(50),

dept_name varchar(20),

credits numeric(2,0),

primary key (course_id),
foreign key (dept_name) references department);

Database1.12Dr. A. Taghinezhad

Updates to tables

▪ Insert

• insert into instructor values ('10211', 'Smith', 'Biology', 66000);

▪ Delete

• Remove all tuples from the student relation

▪ delete from student

▪ Drop Table

• drop table r

▪ Alter

• alter table r add A D

▪ where A is the name of the attribute to be added to relation r and
D is the domain of A.

▪ All exiting tuples in the relation are assigned null as the value for
the new attribute.

• alter table r drop A

▪ where A is the name of an attribute of relation r

▪ Dropping of attributes not supported by many databases.

Database1.13Dr. A. Taghinezhad

Basic Query Structure

▪ A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

• Ai represents an attribute

• Ri represents a relation

• P is a predicate.

▪ The result of an SQL query is a relation.

Database1.14Dr. A. Taghinezhad

The select Clause

▪ The select clause lists the attributes desired in the result of

a query

• corresponds to the projection operation of the relational

algebra

▪ Example: find the names of all instructors:

select name

from instructor

▪ NOTE: SQL names are case insensitive (i.e., you may use

upper- or lower-case letters.)

• E.g., Name ≡ NAME ≡ name

• Some people use upper case wherever we use bold font.

Database1.15Dr. A. Taghinezhad

The select Clause (Cont.)

▪ SQL allows duplicates in relations as well as in

query results.

▪ To force the elimination of duplicates, insert the

keyword distinct after select.

▪ Find the department names of all instructors, and

remove duplicates

select distinct dept_name
from instructor

▪ The keyword all specifies that duplicates should

not be removed.

select all dept_name
from instructor

Database1.16Dr. A. Taghinezhad

The select Clause (Cont.)

▪ An asterisk (*) in the select clause denotes “all attributes”

select *

from instructor

▪ An attribute can be a literal with no from clause

select '437'

• Results is a table with one column and a single row with value “437”

• Can give the column a name using:

select '437' as FOO

▪ An attribute can be a literal with from clause

select 'A'

from instructor

• Result is a table with one column and N rows (number of tuples in

the instructors table), each row with value “A”

Database1.17Dr. A. Taghinezhad

The select Clause (Cont.)

▪ The select clause can contain arithmetic expressions

involving the operation, +, –, , and /, and operating on

constants or attributes of tuples.

• What would be the result of a query that returns a

relation identical to the instructor relation, except

with the value of the attribute "salary" divided by

12?

Database1.18Dr. A. Taghinezhad

The select Clause (Cont.)

• The query:

select ID, name, salary/12
from instructor

would return a relation that is the same as the instructor
relation, except that the value of the attribute salary is

divided by 12.

• Can rename “salary/12” using the as clause:

select ID, name, salary/12 as monthly_salary

Database1.19Dr. A. Taghinezhad

The where Clause

▪ The where clause specifies conditions that the result must satisfy

• Corresponds to the selection predicate of the relational algebra.

▪ To find all instructors in Comp. Sci. dept

select name
from instructor
where dept_name = 'Comp. Sci.'

▪ SQL allows the use of the logical connectives and, or, and not

▪ The operands of the logical connectives can be expressions involving the

comparison operators <, <=, >, >=, =, and <>.

▪ Comparisons can be applied to results of arithmetic expressions

▪ To find all instructors in Comp. Sci. dept with salary > 70000

select name
from instructor
where dept_name = 'Comp. Sci.' and salary > 70000

Database1.20Dr. A. Taghinezhad

The from Clause

▪ The from clause lists the relations involved in the query

• Corresponds to the Cartesian product operation of the

relational algebra.

▪ Find the Cartesian product instructor X teaches

select 

from instructor, teaches

• generates every possible instructor – teaches pair, with all

attributes from both relations.

• For common attributes (e.g., ID), the attributes in the

resulting table are renamed using the relation name (e.g.,

instructor.ID)

▪ Cartesian product not very useful directly, but useful

combined with where-clause condition (selection operation in

relational algebra).

Database1.21Dr. A. Taghinezhad

Examples

▪ Find the names of all instructors who have taught

some course and the course_id

• select name, course_id
from instructor , teaches
where instructor.ID = teaches.ID

▪ Find the names of all instructors in the Art

department who have taught some course and the

course_id

• select name, course_id
from instructor , teaches
where instructor.ID = teaches.ID

and instructor. dept_name = 'Art'

Database1.22Dr. A. Taghinezhad

The Rename Operation

▪ The SQL allows renaming relations and attributes using the

as clause:

old-name as new-name

▪ Find the names of all instructors who have a higher salary

than

some instructor in 'Comp. Sci'.

• select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = 'Comp.
Sci.’

▪ Keyword as is optional and may be omitted

instructor as T ≡ instructor T

Database1.23Dr. A. Taghinezhad

Self Join Example

▪ Relation emp-super

▪ Find the supervisor of “Bob”

▪ Find the supervisor of the supervisor of “Bob”

▪ Can you find ALL the supervisors (direct and

indirect) of “Bob”?

Database1.24Dr. A. Taghinezhad

String Operations

▪ SQL includes a string-matching operator for comparisons on character

strings. The operator like uses patterns that are described using two

special characters:

• percent (%). The % character matches any substring.

• underscore (_). The _ character matches any character.

▪ Find the names of all instructors whose name includes the substring

“dar”.

select name
from instructor
where name like '%dar%'

▪ Match the string “100%”

like '100 \%' escape '\'

in that above we use backslash (\) as the escape character.

Database1.25Dr. A. Taghinezhad

String Operations (Cont.)

▪ Patterns are case sensitive.

▪ Pattern matching examples:

• 'Intro%' matches any string beginning with “Intro”.

• '%Comp%' matches any string containing “Comp” as a

substring.

• '_ _ _' matches any string of exactly three characters.

• '_ _ _ %' matches any string of at least three characters.

▪ SQL supports a variety of string operations such as

• concatenation (using “||”)

• converting from upper to lower case (and vice versa)

• finding string length, extracting substrings, etc.

Database1.26Dr. A. Taghinezhad

Ordering the Display of Tuples

▪ List in alphabetic order the names of all

instructors

select distinct name
from instructor
order by name

▪ We may specify desc for descending order or

asc for ascending order, for each attribute;

ascending order is the default.

• Example: order by name desc

▪ Can sort on multiple attributes

• Example: order by dept_name, name

Database1.27Dr. A. Taghinezhad

Where Clause Predicates

▪ SQL includes a between comparison operator

▪ Example: Find the names of all instructors with salary

between $90,000 and $100,000 (that is,  $90,000 and

 $100,000)

• select name
from instructor
where salary between 90000 and 100000

▪ Tuple comparison

• select name, course_id
from instructor, teaches
where (instructor.ID, dept_name) = (teaches.ID,

'Biology');

Database1.28Dr. A. Taghinezhad

Set Operations

▪ Find courses that ran in Fall 2017 or in Spring 2018

(select course_id from section where sem = 'Fall' and year = 2017)

union

(select course_id from section where sem = 'Spring' and year = 2018)

▪ Find courses that ran in Fall 2017 and in Spring 2018

(select course_id from section where sem = 'Fall' and year = 2017)

intersect

(select course_id from section where sem = 'Spring' and year = 2018)

▪ Find courses that ran in Fall 2017 but not in Spring 2018

(select course_id from section where sem = 'Fall' and year = 2017)

except

(select course_id from section where sem = 'Spring' and year = 2018)

Database1.29Dr. A. Taghinezhad

Set Operations (Cont.)

▪ Set operations union, intersect, and except

• Each of the above operations automatically

eliminates duplicates

▪ To retain all duplicates use the

• union all,

• intersect all

• except all.

Database1.30Dr. A. Taghinezhad

Null Values

▪ It is possible for tuples to have a null value, denoted by null,

for some of their attributes

▪ null signifies an unknown value or that a value does not exist.

▪ The result of any arithmetic expression involving null is null

• Example: 5 + null returns null

▪ The predicate is null can be used to check for null values.

• Example: Find all instructors whose salary is null.

select name
from instructor
where salary is null

▪ The predicate is not null succeeds if the value on which it is

applied is not null.

Database1.31Dr. A. Taghinezhad

Null Values (Cont.)

▪ SQL treats as unknown the result of any comparison involving a null

value (other than predicates is null and is not null).

• Example: 5 < null or null <> null or null = null

▪ The predicate in a where clause can involve Boolean operations (and,

or, not); thus the definitions of the Boolean operations need to be

extended to deal with the value unknown.

• and : (true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

• or: (unknown or true) = true,

(unknown or false) = unknown
(unknown or unknown) = unknown

▪ Result of where clause predicate is treated as false if it evaluates to

unknown

Database1.32Dr. A. Taghinezhad

Aggregate Functions

▪ These functions operate on the multiset of

values of a column of a relation, and

return a value

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

Database1.33Dr. A. Taghinezhad

Aggregate Functions Examples

▪ Find the average salary of instructors in the Computer

Science department

• select avg (salary)

from instructor
where dept_name= 'Comp. Sci.';

▪ Find the total number of instructors who teach a course in

the Spring 2018 semester

• select count (distinct ID)

from teaches
where semester = 'Spring' and year = 2018;

▪ Find the number of tuples in the course relation

• select count (*)

from course;

Database1.34Dr. A. Taghinezhad

Aggregate Functions – Group By

▪ Find the average salary of instructors in each department

• select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name;

Database1.35Dr. A. Taghinezhad

Aggregation (Cont.)

▪ Attributes in select clause outside of aggregate

functions must appear in group by list

• /* erroneous query */

select dept_name, ID, avg (salary)

from instructor
group by dept_name;

Database1.36Dr. A. Taghinezhad

Example

را تهیه کرده اند؟P2مشخص کنید چند تهیه کننده ▪

QtyP#S#

300P1s1

200P2s2

400P3s3

300P1s2

400P2s2

200P2s3

S

P

SP

CitySnameS#

TehranFanavara

n

s1

TabrizIran

Segment

s2

TabrizPooladins3

CityTypeColorP#

TehranIronRedP1

TabrizCopp

er

GreenP2

ShirazBras

s

BlueP3

TehranIronRedP4

Database1.37Dr. A. Taghinezhad

Example

را تهیه کرده اند؟P2مشخص کنید چند تهیه کننده ▪

▪Select count(*) from SP where p#=‘P2’

QtyP#S#

300P1s1

200P2s2

400P3s3

300P1s2

400P2s2

200P2s3

S P
SP

CitySnameS#

TehranFanavarans1

TabrizIran

Segment

s2

TabrizPooladins3

CityTypeColorP#

TehranIronRedP1

TabrizCopperGreenP2

ShirazBrassBlueP3

TehranIronRedP4

Database1.38Dr. A. Taghinezhad

Example

کل مقدار تهیه شده از هر قطعه را در جدول جواب بدهد همراه با شماره ▪
قطعه

QtyP#S#

300P1s1

200P2s2

400P3s3

300P1s2

400P2s2

200P2s3

S P
SP

CitySnameS#

TehranFanavarans1

TabrizIran

Segment

s2

TabrizPooladins3

CityTypeColorP#

TehranIronRedP1

TabrizCopperGreenP2

ShirazBrassBlueP3

TehranIronRedP4

Database1.39Dr. A. Taghinezhad

Example

کل مقدار تهیه شده از هر قطعه را در جدول جواب بدهد همراه با شماره قطعه▪

▪Select P#, SUM(Qty) from SP Group By P#

QtyP#S#

300P1s1

200P2s2

400P3s3

300P1s2

400P2s2

200P2s3

S P
SP

CitySnameS#

TehranFanavarans1

TabrizIran

Segment

s2

TabrizPooladins3

CityTypeColorP#

TehranIronRedP1

TabrizCopperGreenP2

ShirazBrassBlueP3

TehranIronRedP4

Database1.40Dr. A. Taghinezhad

Example

رفتن برای هر قطعه تهیه شده، شماره قطعه، کل تعداد و ماکزیمم تعداد تهیه شده از آن را بدون در نظر گ▪
S1بدهد

QtyP#S#

300P1s1

200P2s2

400P3s3

300P1s2

400P2s2

200P2s3

S P
SP

CitySnameS#

TehranFanavarans1

TabrizIran

Segment

s2

TabrizPooladins3

CityTypeColorP#

TehranIronRedP1

TabrizCopperGreenP2

ShirazBrassBlueP3

TehranIronRedP4

Database1.41Dr. A. Taghinezhad

Example

رفتن برای هر قطعه تهیه شده، شماره قطعه، کل تعداد و ماکزیمم تعداد تهیه شده از آن را بدون در نظر گ▪
S1بدهد

▪ Select P#, SUM(Qty),MAX(Qty)

▪ From SP

▪ Where S# !=‘S!’

▪ Group By P#

QtyP#S#

300P1s1

200P2s2

400P3s3

300P1s2

400P2s2

200P2s3

S P
SP

CitySnameS#

TehranFanavarans1

TabrizIran

Segment

s2

TabrizPooladins3

CityTypeColorP#

TehranIronRedP1

TabrizCopperGreenP2

ShirazBrassBlueP3

TehranIronRedP4

Database1.42Dr. A. Taghinezhad

Aggregate Functions – Having Clause

▪ Find the names and average salaries of all

departments whose average salary is greater than

42000

▪ Note: predicates in the having clause are applied

after the formation of groups whereas predicates in

the where clause are applied before forming groups

select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name
having avg (salary) > 42000;

Database1.43Dr. A. Taghinezhad

Nested Subqueries

▪ SQL provides a mechanism for the nesting of subqueries. A subquery is a

select-from-where expression that is nested within another query.

▪ The nesting can be done in the following SQL query

select A1, A2, ..., An

from r1, r2, ..., rm

where P

as follows:

• From clause: ri can be replaced by any valid subquery

• Where clause: P can be replaced with an expression of the form:

B <operation> (subquery)

B is an attribute and <operation> to be defined later.

• Select clause:

Ai can be replaced be a subquery that generates a single value.

Database1.44Dr. A. Taghinezhad

Set Membership

Database1.45Dr. A. Taghinezhad

Set Membership

▪ Find courses offered in Fall 2017 and in Spring 2018

▪ Find courses offered in Fall 2017 but not in Spring 2018

select distinct course_id
from section
where semester = 'Fall' and year= 2017 and

course_id in (select course_id
from section
where semester = 'Spring' and year= 2018);

select distinct course_id
from section
where semester = 'Fall' and year= 2017 and

course_id not in (select course_id
from section
where semester = 'Spring' and year= 2018);

Database1.46Dr. A. Taghinezhad

Set Membership (Cont.)

▪ Name all instructors whose name is neither “Mozart” nor Einstein”

select distinct name
from instructor
where name not in ('Mozart', 'Einstein')

▪ Find the total number of (distinct) students who have taken course

sections taught by the instructor with ID 10101

▪ Note: Above query can be written in a much simpler manner.

The formulation above is simply to illustrate SQL features

select count (distinct ID)

from takes
where (course_id, sec_id, semester, year) in

(select course_id, sec_id, semester, year
from teaches
where teaches.ID= 10101);

Database1.47Dr. A. Taghinezhad

Set Comparison

Database1.48Dr. A. Taghinezhad

Set Comparison – “some” Clause

▪ Find names of instructors with salary greater than

that of some (at least one) instructor in the Biology

department.

▪ Same query using > some clause

select name
from instructor
where salary > some (select salary

from instructor
where dept name = 'Biology');

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept name = 'Biology';

Database1.49Dr. A. Taghinezhad

Definition of “some” Clause

▪ F <comp> some r   t  r such that (F <comp> t)
Where <comp> can be:    = 

0
5

6

(5 < some) = true

0
5

0

) = false

5

0
5(5  some) = true (since 0  5)

(read: 5 < some tuple in the relation)

(5 < some

) = true(5 = some

(= some)  in

However, ( some)  not in

Database1.50Dr. A. Taghinezhad

Set Comparison – “all” Clause

▪ Find the names of all instructors whose salary is greater than

the salary of all instructors in the Biology department.
select name
from instructor
where salary > all (select salary

from instructor
where dept name = 'Biology');

Database1.51Dr. A. Taghinezhad

Definition of “all” Clause

▪ F <comp> all r   t  r (F <comp> t)

0
5

6

(5 < all) = false

6
10

4

) = true

5

4
6(5  all) = true (since 5  4 and 5  6)

(5 < all

) = false(5 = all

( all)  not in

However, (= all)  in

Database1.52Dr. A. Taghinezhad

Test for Empty Relations

▪ The exists construct returns the value true if the argument subquery is

nonempty.

▪ exists r  r  Ø

▪ not exists r  r = Ø

Database1.53Dr. A. Taghinezhad

Use of “exists” Clause

select *
from نام جدول as مستعار
where [شرط and]

exists (Select Op);

▪ Correlation name – variable S in the outer query

▪ Correlated subquery – the inner query

Database1.54Dr. A. Taghinezhad

Use of “exists” Clause

▪ Yet another way of specifying the query “Find all courses taught in both

the Fall 2009 semester and in the Spring 2010 semester”

Q?

Database1.55Dr. A. Taghinezhad

Use of “exists” Clause

▪ Yet another way of specifying the query “Find all courses taught in both

the Fall 2009 semester and in the Spring 2010 semester”

select course_id
from section as S
where semester = ’Fall’ and year = 2009 and

exists (select *

from section as T
where semester = ’Spring’ and year= 2010

and S.course_id = T.course_id);

▪ Correlation name – variable S in the outer query

▪ Correlated subquery – the inner query

Database1.56Dr. A. Taghinezhad

Use of “not exists” Clause

▪ Find all students who have taken all courses offered in the

Biology department.

• First nested query lists all courses offered in Biology

• Second nested query lists all courses a particular student took

Note that X – Y = Ø  X  Y

Note: Cannot write this query using = all and its variants

Q?

Database1.57Dr. A. Taghinezhad

Use of “not exists” Clause

▪ Find all students who have taken all courses offered in the

Biology department.

select distinct S.ID, S.name
from student as S
where not exists ((select course_id

from course
where dept_name = ’Biology’)

except

(select T.course_id
from takes as T
where S.ID = T.ID));

• First nested query lists all courses offered in Biology

• Second nested query lists all courses a particular student took

Note that X – Y = Ø  X  Y

Note: Cannot write this query using = all and its variants

Database1.58Dr. A. Taghinezhad

Test for Absence of Duplicate Tuples

▪ The unique construct tests whether a subquery has any

duplicate tuples in its result.

▪ The unique construct evaluates to “true” if a given

subquery contains no duplicates .

▪ select *
from نام جدول as مستعار
where [شرط and]

where unique (Select Operation)

▪ Find all courses that were offered at most once in 2009

Q?

Database1.59Dr. A. Taghinezhad

Test for Absence of Duplicate Tuples

▪ The unique construct tests whether a subquery has any duplicate tuples

in its result.

▪ The unique construct evaluates to “true” if a given subquery contains no

duplicates .

▪ Find all courses that were offered at most once in 2017

select T.course_id
from course as T
where unique (select R.course_id

from section as R
where T.course_id= R.course_id

and R.year = 2017);

Database1.60Dr. A. Taghinezhad

Subqueries in the From Clause

Database1.61Dr. A. Taghinezhad

Subqueries in the Form Clause

▪ SQL allows a subquery expression to be used in the from clause

▪ Find the average instructors’ salaries of those departments where the

average salary is greater than $42,000.”

select dept_name, avg_salary
from (select dept_name, avg (salary) as avg_salary

from instructor
group by dept_name)

where avg_salary > 42000;

▪ Note that we do not need to use the having clause

▪ Another way to write above query

select dept_name, avg_salary
from (select dept_name, avg (salary)

from instructor
group by dept_name)

as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;

Database1.62Dr. A. Taghinezhad

With Clause

▪ The with clause provides a way of defining a temporary relation whose

definition is available only to the query in which the with clause occurs.

▪ Find all departments with the maximum budget

with max_budget (value) as

(select max(budget)
from department)

select department.name
from department, max_budget
where department.budget = max_budget.value;

Database1.63Dr. A. Taghinezhad

Complex Queries using With Clause

▪ Find all departments where the total salary is greater than the

average of the total salary at all departments

Q?

Database1.64Dr. A. Taghinezhad

Complex Queries using With Clause

▪ Find all departments where the total salary is greater than the

average of the total salary at all departments

with dept _total (dept_name, value) as

(select dept_name, sum(salary)

from instructor
group by dept_name),

dept_total_avg(value) as

(select avg(value)

from dept_total)
select dept_name
from dept_total, dept_total_avg
where dept_total.value > dept_total_avg.value;

Database1.65Dr. A. Taghinezhad

Scalar Subquery

▪ Scalar subquery is one which is used where a single value is

expected

▪ List all departments along with the number of instructors in each

department

Q?

Database1.66Dr. A. Taghinezhad

Scalar Subquery

▪ Scalar subquery is one which is used where a single value is

expected

▪ List all departments along with the number of instructors in each

department

select dept_name,

(select count(*)

from instructor
where department.dept_name = instructor.dept_name)

as num_instructors
from department;

▪ Runtime error if subquery returns more than one result tuple

Database1.67Dr. A. Taghinezhad

Modification of the Database

▪ Deletion of tuples from a given relation.

▪ Insertion of new tuples into a given relation

▪ Updating of values in some tuples in a given relation

Database1.68Dr. A. Taghinezhad

Deletion

▪ Delete all instructors

delete from instructor

▪ Delete all instructors from the Finance department

delete from instructor
where dept_name= 'Finance’;

▪ Delete all tuples in the instructor relation for those instructors associated
with a department located in the Watson building.

delete from instructor
where dept name in (select dept name

from department
where building = 'Watson');

Database1.69Dr. A. Taghinezhad

Deletion (Cont.)

▪ Delete all instructors whose salary is less than the average salary of

instructors

• Problem: as we delete tuples from instructor, the average

salary changes

• Solution used in SQL:

1. First, compute avg (salary) and find all tuples to delete

2. Next, delete all tuples found above (without recomputing

avg or retesting the tuples)

delete from instructor
where salary < (select avg (salary)

from instructor);

Database1.70Dr. A. Taghinezhad

Deletion

▪ Delete all tuples in the instructor relation for those instructors

associated with a department located in the Watson building.Q?

Database1.71Dr. A. Taghinezhad

Deletion

▪ Delete all tuples in the instructor relation for those instructors

associated with a department located in the Watson building.

delete from instructor
where dept name in (select dept name

from department
where building = ’Watson’);

Database1.72Dr. A. Taghinezhad

Insertion

▪ Add a new tuple to course

insert into course
values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

▪ or equivalently

insert into course (course_id, title, dept_name, credits)

values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

▪ Add a new tuple to student with tot_creds set to null

insert into student
values ('3003', 'Green', 'Finance', null);

Database1.73Dr. A. Taghinezhad

Insertion (Cont.)

▪ Make each student in the Music department who has earned more than

144 credit hours an instructor in the Music department with a salary of

$18,000.

insert into instructor
select ID, name, dept_name, 18000
from student
where dept_name = 'Music' and total_cred > 144;

▪ The select from where statement is evaluated fully before any of its

results are inserted into the relation.

Otherwise queries like

insert into table1 select * from table1

would cause problem

Database1.74Dr. A. Taghinezhad

Updates

▪ Give a 5% salary raise to all instructors

update instructor
set salary = salary * 1.05

▪ Give a 5% salary raise to those instructors who earn less than 70000

update instructor
set salary = salary * 1.05

where salary < 70000;

▪ Give a 5% salary raise to instructors whose salary is less than average

update instructor
set salary = salary * 1.05

where salary < (select avg (salary)

from instructor);

Database1.75Dr. A. Taghinezhad

Updates (Cont.)

▪ Increase salaries of instructors whose salary is over $100,000 by 3%, and

all others by a 5%

• Write two update statements:

update instructor
set salary = salary * 1.03

where salary > 100000;

update instructor
set salary = salary * 1.05

where salary <= 100000;

• The order is important

• Can be done better using the case statement (next slide)

Database1.76Dr. A. Taghinezhad

Case Statement for Conditional Updates

▪ Same query as before but with case statement

update instructor
set salary = case

when salary <= 100000 then salary * 1.05

else salary * 1.03

end

Database1.77Dr. A. Taghinezhad

Updates with Scalar Subqueries

▪ Recompute and update tot_creds value for all students

update student S
set tot_cred = (select sum(credits)

from takes, course
where takes.course_id = course.course_id and

S.ID= takes.ID.and

takes.grade <> 'F' and

takes.grade is not null);

▪ Sets tot_creds to null for students who have not taken any course

▪ Instead of sum(credits), use:

case

when sum(credits) is not null then sum(credits)

else 0

end

Database1.78Dr. A. Taghinezhad

End of Chapter 3

